Magistrsko delo

VPLIV INTERNETNE PRODAJALNE NA VEDENJE PORABNIKOV

Kandidat: Jurij Cvikl, univ. dipl. oec.,
rojen leta 1974, v kraju Celje,
zaposlen v Merkur, d. d., Naklo
ekot oglaševalec.
Absolvent na smeri Marketing.
Tema odobrena na seji senata EPF dne 18. februarja 2005
z delovnim naslovom:
Vpliv internetne prodajalne na vedenje porabnikov.
Mentor: dr. Damijan Mumel, izredni profesor
Ekonomsko-poslovna fakulteta v Mariboru.
SUMMARY

Consumer behaviour on the internet is often oriented in the way of searching and collecting information about products and services, but however the final choice is usually still made between the shelves in the "brick and mortar" store. The quality of information, which acts as a key benefit of multichannel shopping, seems to be the most important factor of e-shopping, because it reduces the cognitive costs of searching for information and information processing as well. Our research empirically proved that the consumer behaviour is influenced by the internet environment, a fact which can be confirmed by the characteristic relationship between the intensity of e-store visits (by different e-communication tools like e-mail, banners etc.) and the number of purchases in Merkur as well as with their total shopping value (sum of internet and physical purchases). In addition to that, consumers with higher value of purchases are generally less satisfied with the product assortment offered on the internet, which is most likely because of the difference between the bidding range of Merkur’s physical and internet stores.

Internet store also notes some e-purchases, which are significantly correlated with consumers’ experience in e-shopping. Number of e-orders is on the other hand only weakly influenced by the response on Merkur’s e-communications activities and by the satisfaction with products prices and paying options in e-store, respectively. We also found strong correlation between design-navigation factors, which are represented by clearness, easy of use and speed of product search in the e-store, which are further strongly correlated with the satisfaction of the product assortment and its presentation in e-store. However all of them own high internal consistency as well. In the future a more thorough study of existing relationships between the respective attributes in the context of multichannel shopping behaviour should be conducted.

Our research relates the analysis of consumer attitude with observations of their behaviour. Results indicate that the consumer environmental data can be applied to the customer tracking on the internet. Such analysis of e-purchasing was executed with data mining of e-store’s server diary and the database of Merkur’s loyalty program, where all tracks about e-shopping activities are available. Therefore such approach was employed and the evidence about significant influence of the internet store on consumer behaviour in the real world was confirmed. The results point to the necessity of environmental approach in the field of marketing.

Keywords: internet store, e-store, internet environment, consumer, consumer behaviour, e-shopping, multichannel shopping, marketing, e-marketing, Merkur.
POVZETEK

Vedenje porabnikov je na internetu pogosto usmerjeno v iskanje informacij o izdelkih in storitvah, nakupi pa se še vedno opravljajo v klasičnih prodajalnah. Zato je kakovost informacij, ki je ključna korist multikanalnega nakupovanja, najpomembnejši dejavnik e-nakupovanja, saj zmanjšuje kognitivne stroške iskanja informacij in njihovega procesiranja. Raziskava je empirično dokazala vpliv internetnega okolja na vedenje porabnikov, saj je bilo število obiskov e-prodajalne iz različnih e-komunikacijskih orodij (kot so e-pošta, pasice in ostalo) značilno povezano s skupnim številom in vrednostjo nakupov v Merkurju (skupno vsoto internetnih in klasičnih nakupov). Dodatno kaže na multikanalno nakupovanje porabnikov tudi dejstvo, da so bili porabniki, ki so opravili več nakupov v Merkurju, manj zadovoljni s ponudbo e-prodajalne, kar je verjetno posledica razkoraka med klasično in internetno ponudbo.

Nekateri porabniki opravljajo tudi nakupe v Merkurjevi internetni prodajalni, kar je značilno povezano z njihovo izkušenostjo v e-nakupovanju. Na število opravljenih e-nakupov vplivajo šibko tudi pogostost interakcije z orodji Merkurjevega e-komuniciranja, zadovoljstvo s cenami in plačilnimi pogoji. Opazili smo tudi močno medsebojno povezanost dejavnikov oblikovne in navigacijske uporabnosti internetne prodajalne, oziroma močno povezavo med zaznano preglednostjo, enostavnostjo brskanja in hitrostjo iskanja izdelkov. Vsi trije dejavniki so tudi srednje močno povezani z zadovoljstvom s ponudbo in predstavitvijo izdelkov. Z vidika multikanalnega nakupovanja porabnikov kaže odnose med temi dejavniki v prihodnje tudi podrobneje raziskati.

V raziskavi smo povezali merjenje stališč porabnikov in opazovanje njihovega vedenja. Rezultati kažejo na uporabnost analize okoljskih podatkov o porabnikih in sledenja njihovega nakupovanja po internetu. Takšno analizo smo izvedli z rudarjenjem po bazi podatkov o imetnikih Merkurjeve kartice zaupanja in dnevniku spletnega strežnika, kjer so vse sledi vedenja porabnikov tudi zabeležene. Takšen pristop nam je pomagal, da smo dokazali vpliv internetne prodajalne na vedenje porabnikov v resničnem svetu. Rezultati nam kažejo tudi na nujnost environmentalističnega pogleda v raziskavah marketinga.

ZAHVALA

Magistrsko delo je nastalo kot raziskovalni projekt s področja vedenja porabnikov, marketinga in informacijske tehnologije. V njem so pustile svoje sledi mnoge osebe, vse udeležence in njihove prispevke pa je pravzaprav nemogoče prešteti.

Najbolj zaslužni so: Gregor Bobovnik, Barbara Zmrzlikar, Boris Moškotelec, Andrej Remškar, Andreja Rajnik, Matjaž Prtenjak, Katja Mihelič Sušnik, Albina Karner, Dušan Krošl, Mojca Okršlar, Marko Svetina, Mateja Klemenčič, Maja Kocjančič, Anica Gradič, Vanja Govednik in družba Merkur.

Za mentorstvo in veliko pomoč v prelomnih trenutkih gre tudi največja zahvala
dr. Damijanu Mumlu.

Za podporo in neskončno potrpežljivost pa se iz vsega srca zahvaljujem
Marjetki in Timoteju, staršem in ostalim članom moje družine.

V Celju, 19. novembra 2005

Jurij Cvikl
1 UVOD

1.1 Naslov teme

Vpliv internetne prodajalne na vedenje porabnikov.

1.2 Opredelitev področja in opis problema

Raziskava RIS (Vehovar in Čičić 2004, 6) je poročala, da se celotni obseg internetne potrošnje v Sloveniji (okoli 8 mrd SIT) ocenjuje na okoli 0,3 odstotke končne potrošnje, kar je nadvse skromno v primerjavi z najrazvitejšimi gospodarstvi. Med prvih deset internetnih prodajaln, po nakupih v Sloveniji, spada tudi Merkurjeva e-prodajalna http://nakup.merkur.si (Vehovar in Šijanec po 2005, 70) in je namenjena predvsem pospeševanju prodaje v celotni Merkurjevi prodajni mreži, pa tudi neposredni prodaji po internetu. Merkurjeva e-prodajalna beleži približno 30.000 obiskovalcev na mesec (ang. unique users per month, izmerjeno z Webtrends Log Analyzer). Takšen obisk je po številu nakupovalcev primerljiv z obiskom večjega Merkurjevega trgovskega centra, vendar ima e-prodajalna le okrog 150 nakupov na mesec, kar predstavlja 0,7 % prometa enega večjega Merkurjevega trgovskega centra. Zato smo si seveda postavili očitni vprašanji:

• zakaj razlika med obiski in nakupi po internetu, saj se zdi, da porabniki obiskujejo e-prodajalno in potem ne kupujejo v njej in

• kakšen vpliv ima, če ga ima, internetna prodajalna na vedenje porabnikov?

Pri iskanju odgovora na vprašanji smo si pomagali z dosedanjimi teoretičnimi izsledki, seveda pa smo raziskovalne metode prilagodili naši raziskavi porabnikov in internetne prodajalne. Osrednji raziskovalni problem magistrske naloge je bil preučevanje porabnikov, ki so nakupovali po internetu in nato tudi kupili izdelke v Merkurju (po internetu ali v klasičnih prodajalnah), vplivnih dejavnikov okolja internetne prodajalne in njenih komunikacijskih orodij. Ugotovitve raziskave o vplivu Merkurjevega e-komuniciranja na porabnike so pomagale k pojasniti izbranega poslovnega problema, dodali pa smo tudi nova spoznanja k splošni problematiki skromnega e-nakupovanja v Sloveniji.

1.3 Namen, cilji in osnovne hipoteze

1.3.1 Namen

Področje raziskav vedenja porabnikov in nakupovanja po internetu ima širok raziskovalni okvir in zajema več teoretičnih pristopov. Ker smo želeli poslovnii problem pojasniti s pomočjo predhodnih teoretičnih doganj, smo pregledali najprej ugotovitve opaznih

1.3.2 Cilji

Osnovni cilj naloge je bil raziskati vpliv okolja e-prodajalne oziroma Merkurjevega e-komuniciranja na porabnike in njihove nakupe v Merkurju. Zastavljen raziskovalni problem smo reševali postopoma, z doseganjem naslednjih etapnih ciljev:

- najprej smo poiskali primerno teoretično podlago za rešitev problema, iz literature naredili izvleček pomembnih lastnosti e-porabnikov in opisali naravo e-nakupovanja (drugo poglavje) ter temeljne komunikacijske značilnosti Merkurjeve e-prodajalne (tretje poglavje),
- teoretična dejstva smo povezali s poslovnim problemom, sestavili hipoteze in jih preverili z empirično raziskavo (četrto poglavje),
- s pomočjo sklepovih ugotovitev in priporočil smo zaokrožili naša razmišljanja in dosegli zastavljene cilje raziskovalnega dela.

1.3.3 Osnovne hipoteze

Raziskovalni viri se na splošno najbolj strinjajo in najpogosteje navajajo naslednje, izrazito vplivne dejavnike e-nakupovanja: prepričanje o nakupovanju po internetu, predhodne izkušnje in prepričljivost ponudbe. Drugi avtorji ugotavljajo, da se porabniki in njihova stališča glede e-nakupovanja razlikujejo po naslednjih demografskih lastnostih: spolu, starosti, izobrazbi, poklicu, dohodku, hobijih ali področju bivanja (mesto, polurbano, vas). Medtem pa Rogers (1983) navaja naslednje temeljne dejavnike difuzije inovacije, ki so tudi predniki porabnikove adopcije: lastnosti posameznika, komunikacija in atraktivnost. Zato bomo tudi mi utemeljili raziskovalni konstrukt s tremi stebri porabnikove adopcije inovacije, ki je v našem primeru e-nakupovanje:

- e-lastnosti porabnika,
- vpliv komunikacijskega sredstva (interneta) oz. e-okolja nakupovanja in
- vpliv atraktivnosti e-ponudbe.

¹ Pregled člankov znanstvenih revij in zbornikov konferenc kaže, da se pri raziskovanju e-trgovanja uporablja najpogosteje teorija razumne akcije, teorija načrtovanega vedenja, modeli sprejemljivosti tehnologije in teorija difuzije inovacij, nekatere opazne raziskave pa so izpeljane s pomočjo environmentalizma.
SLIKA 1: OSNOVNA PREDPOSTAVKA RAZISKAVE

Opomba: Pri vplivu interneta mislimo na moč kanala oz. posredovanih e-impulzov, ki povzročijo odzivni prag, pri e-ponudbi pa njeno atraktivnost in konkurenčnost.

Ker smo predvidevali vpliv treh prednikov porabnikove adopcije pri e-nakupovanju, smo izpeljali tri temeljne hipoteze.

H-I: Porabnikove lastnosti vplivajo na njihovo vedenje pri e-nakupovanju.
H-II: Interakcija z e-prodajalno vpliva na vedenje porabnikov pri e-nakupovanju.
H-III: Ponudba e-prodajalne vpliva na vedenje porabnikov pri e-nakupovanju.

Medtem ko prva krovna hipoteza vpleta porabnikove lastnosti (H-I), kažeta drugi dve na vpliv e-prodajalne, tako s stališča pogostosti in kakovosti interakcije s spletnim okoljem (H-II), kakor tudi superiornosti ponudbe (H-III).

Jedro in bistveni element našega raziskovanja je bil vpliv internetnega okolja na porabnika, v raziskavi pa smo preverjali izide nakupovanja po internetu.

1.4 Predpostavke in omejitve

1.4.1 Predpostavke

Pregled temeljnih hipotez kaže, da smo moč interakcije z e-prodajalno uvrstili po pomembnosti tako visoko, kot so lastnosti porabnika in atraktivnost ponudbe. S tem smo predpostavili, da e-komuniciranje (pogostost interakcije s pasicami, e-pošto in e-prodajalno, skupaj z oblikovno "attractivestjo" ter uporabnostjo) povečuje vpliv atraktivnosti ponudbe in porabnikov osebnih lastnosti na vedenje pri e-nakupovanju.

Ker smo v uvodu odkrili problem nesorazmerja med obiski in nakupi po internetu, smo tudi predpostavili, da trije dejavniki adopcije ne vplivajo le na e-nakupovanje v ožjem smislu (npr. na število in vrednost nakupov), ampak tudi na nakupe v klasičnih prodajalnah. S tem smo pojem e-nakupovanja razširili iz enokanalnega nakupovanja po internetu na zbiranje informacij za klasične nakupe v prodajalnah in predpostavili, da sestavljata internetno in klasično nakupovanje nakupovalni proces kot celoto. Predpostavili smo torej, da porabnik uporablja več kanalov, kar označujemo s pojmom multikanalno nakupovanje.
1.4.2 Omejitve

Raziskovalni problem je pogojeval preučevanje vplivnih dejavnikov, ki so se odražali v vedenju v multikanalnem okolju (nakupi/nenakupi po internetu/v klasičnih prodajalnah). Zaradi širine problematike smo se osredotočili na preučevanje Merkurjevih kupcev, vsa spoznanja pa so bila s tem dejstvom tudi determinirana. Neposredno namreč ni bilo mogoče ugotoviti razlike med nenakupovalci in nakupovalci po internetu, ki so kupovali pri konkurenci. Naslednje večje omejitve so izhajale iz metodologije empirične raziskave, ki je uporabila tri izvore podatkov: raziskavo stališč porabnikov, podatke o obiskih e-prodajalne iz dnevnika spletnega strežnika in podatke o nakupih iz baze Merkurjeve kartice zaupanja. Merkurjeva kartica zaupanja (v nadaljevanju Mkz) je kartica, na katero se zapisujejo nakupi v Merkurju, če jo kupci pokažejo na blagajni. Zaradi narave virov podatkov je prihajalo do meritvenih napak in različnih ocen podatkov, ki so se kazale v neusklajenosti med možnimi viri istih spremenljivk. Pri raziskavi stališč so bile na primer problematične ocene dogodkov v preteklosti (npr. število lastnih nakupov v prejšnjem letu), pri podatkih dnevniškega strežnika pa so izkrivljali ocene piškotki, ki identificirajo porabnika na internetu. Baza podatkov o imetnikih Merkurjeve kartice zaupanja pa je bila omejena s pogostostjo prikaza kartice ob nakupu, saj je nekateri kupci ne pokažejo ob nakupu. Kljub oviram in omejitvam smo simulirali in zasnovali model, ki je odgovoril na zastavljeni vprašanji in pripomogel k pojasnitvi zapletenih odnosov med porabniki in trgovci na internetu.

1.5 Predvidene metode raziskave

Pri obdelavi podatkov smo uporabili računalniški program SPSS, Access in druga programska orodja za pripravo podatkovnega modela in prepis odgovorov na anketni vprašalnik, podatkov o obiskih in e-nakupih iz dnevnika spletnega strežnika ter nakupih iz baze Merkurjeve kartice zaupanja.

PREGLED LITERATURE

1.6 Teoretični pristopi v raziskovanju e-nakupovanja

1.6.1 Model sprejetja tehnologije in sorodne teorije

TRA sta v sedemdesetih letih prejšnjega stoletja razvila Ajzen in Fishbein (Foxall 1997, 26) in spada med socialno-kognitivne modele (področje socialne psihologije in raziskovanje stališč), za katere je značilno pojmovanje, da je posamezen cilj, naj bo to socialni objekt ali vedenje, odvisen od posameznikove interpretacije situacije ter prepričanj v zvezi z njo (Radovan 2001, 101). Po TRA je specifično vedenje odvisno predvsem od specifične vedenjske namere, ki je funkcija dveh kognitivnih dejavnikov: stališč do vedenja in subjektivnih norm (to so splošno sprejeti standardi socialnega vedenja, mišljenja ali občutenja). Ajzen in Fishbein poudarjata, da je večina socialnega vedenja pod zavestno kontrolo in zato napovedljiva iz vedenjskih namer, ki pomenijo stopnjo pripravljenosti vedenja. Vendar so avtorji kasneje ugotovili, da lahko nezaupanje v lastno sposobnost izniči še tako privlačen cilj. To pomanjkljivost modela TRA je poskušal Ajzen nadgraditi s teorijo načrtovanega vedenja (v nadaljevanju TPB), v katero je vključil nov primarni dejavnik zaznano controlo vedenja, ki predstavlja pričakovanja o lastni

SLIKA 2: MODEL SPREJETJA TEHNOLOGIJE

Opomba: Model sprejetja tehnologije (TAM) se je razvijal nekaj let. Največkrat citirani avtorji so poleg Fred D. Davisa še Viswanath Venkatesh, Paul R. Warshaw in Richard P. Bagozzi; zdi se, da je prvi članek s takšnimi teoretičnimi podlagami objavil Davis v septembru 1989. Davis je dodatno ugotovil, da bi lahko bila zaznana enostavnost uporabe tudi prednik zaznane uporabnosti, zaznana uporabnost pa ima močnejši vpliv na vedenjske namere kot zaznana enostavnost uporabe (saj vpliva neposredno in posredno, zaznana enostavnost uporabe pa le posredno).

TAM predpostavlja, da obstajata dva prednika stališč o uporabi določene tehnologije (S, ang. attitude towards use): zaznana uporabnost tehnologije (U, ang. perceived usefulness) in zaznana enostavnost uporabe (EU, ang. perceived ease of use). Stališče (S) vpliva na vedenjsko namero uporabe tehnologije (N, ang. behavioral intention), namera pa na končno uporabo tehnologije (V, ang. usage behavior). Če TAM na kratko strmemo, je Davis s soavtorji domneval (Henderson 2003, 4), da so oblikovne lastnosti računalniških sistemov zunanjih stimuli, o katerih uporabniki formirajo določene kognitivne odzive. Oblikovne lastnosti računalniških sistemov, ki povzročajo kognitivni odziv, pa so opredmetene kot (Davis 1993, 477):
• **zaznana uporabnost** kot zunanj motivator in pomeni stopnjo verjetja osebe, da bo uporaba sistema povečala njeno učinkovitost,

• **zaznana enostavnost uporabe** kot notranji motivator in pomeni stopnjo verjetja osebe, da bo uporaba določenega sistema prosta klasičnega in mentalnega napora.

1.6.2 **Teorija difuzije inovacije**

Difuzija inovacije je posebna vrsta komunikacije z bistveno lastnostjo, da vsebuje sporočila o novih idejah (Rogers 1995, 5-6) in pomeni komuniciranje inovacije s člani družbenega sistema skozi izbrane kanale. Zato teorija difuzije inovacije (IDT, ang. Innovation Diffusion Theory) govori o štirih bistvenih elementih, ki jih lahko identificiramo v vsaki njeni raziskavi: **inovacija, komunikacijski kanali, čas in socialni sistem.** Glede na proces difuzije inovacije je Mumel (1999, 59) na področju vedenja porabnikov poimenoval pet splošno sprejetih kategorij inovatorjev (ang. innovators, early adopters,
early majority, late majority, laggards), ki so udeleženi v procesu glede na čas sprejetja: inovatorji, prvi kupci, zgodnja večina, pozna večina in mečkači.

V raziskovalni literaturi se izraz sprejetje tehnologije navezuje bolj na njeno začetno uporabo, dolgoročen uspeh informacijskega sistema pa je odvisen od ponavljaljoče uporabe sistema oz. njegove nadaljnje rabe (Bhattacherjee 2001, 352), kar je kontrast pojmu začetna raba. Podobno razmišljanje vpleta tudi teorija difuzije inovacij, saj Rogers (1995) navaja petstopenjski odločitveni proces, skozi katerega se sprejme inovacija:

- **znanje** (zavedanje obstoja inovacije in začetno razumevanje o njenem delovanju),
- **prepričanje** (oblikovanje stališč o inovaciji),
- **odločitev** (iz odločitve izhajajo aktivnosti sprejetja ali zavrnitve inovacije),
- **izvedba** (pridobivanje in uporaba inovacije),
- **potrditev** (iskanje potrditve odločitve, kar lahko pripelje tudi do prenehanja uporabe ob izpostavljenosti negativnim sporočilom o inovaciji).

Iz literature je videti, da je Rogers razvil petstopenjski model nekoliko kasneje iz štiristopenjskega Rogers-Shoemakerjevega modela, ki je prav tako pogosto naveden v raziskavah masovnega komuniciranja (Priloga 1). Bistvo obeh je sugestija, da adopterji ponovno ocenijo sprejetje inovacije v končni potrditveni stopnji, kjer se odločajo o nadaljnjih uporabi inovacije.

1.6.3 **Teorija pričakovanja in potrditve**

1.6.4 Environmentalizem

Environmentalizem izhaja iz behaviorističnega toka psihologije in ga predstavlja v njegovi najbolj strogih in doslednih oblikah. Behaviorizem se je pojavil v začetku 20. stoletja in temelji na predpostavki, da je mogoče na znanstven način raziskovati samo objektivno opazljive pojave, zato je psihologija znanost o obnašanju. Behavioristi menijo, da zavestnega doživljanja ni mogoče opazovati z rigoroznostjo, ki jo terja znanost, saj je odločilni kriterij znanstvene metode preverljivost izzesledkov (Musek 2003, 177, po Watsonu 1913). Behavioristi so kritizirali vso "mentalistično" psihologijo z dokazovanjem, da nihče ne more preveriti tega, kaj mislijo in doživljajo drugi ljudje. Zato so vsi vedenjski odzivi povezani z dražljaji, zveze med dražljaji (S) in odzivi (R) na dražljaje pa pomenijo obnašanje. Predmet psihologije je skupaj S-R zvez ali navad, pri tem pa moramo ignorirati zavestno dogajanje, duševnost in vse, kar sodi v neopazljivo notranjost, t.i. črno škatlo. Gre torej za klasično pavlovsko pogojevanje. Enota opazovanja je torej S-R odnos, ki že sam po sebi vključuje vzročnost, glavna metoda raziskovanja psihologije pa je seveda eksperiment. Radikalno zavračanje mentalizma in nezadostni pojasnjevalni domet dražljavev oz. vplivov okolja pri razlaganju obnašanja, je pripeljalo do neobehaviorizma. Zato je klasični S-R model zamenjal S-O-R model, ki predvideva posredovanje med dražljaji in odzivi z vmesno sprememljivko - hipotetičnim konstrukтом.

SLIKA 3: S-O-R MODEL

![Diagram S-O-R model](image)

Opombe: Eden od vpeljanih konstruktov v modelu S-O-R je bilo tudi pričakovanje (Edwin C. Tolman) in stoji na predpostavki, da je obnašanje celostno in ima nek celostni smisel oz. je ciljno usmerjeno. Zato si subjekti oblikujejo predvzem predstave o svojem okolju in o ciljih, ki jih je možno doseči, kar predstavlja notranjo, kognitivno dejavnost (pričakovanja temeljijo na kognitivnih zmožnostih, da življa in je posebej ljudje razvijejo kognitivne reprezentacije pomembnih vidikov okolja, spoznavne oz. kognitivne zemljevide, zaradi katerih je obnašanje bolj učinkovito). Tolman velja za pionirja kognitivne psihologije.

Simboli: S - dražljaj, O - vmesna sprememljivka, R - odziv.

Skinner (Frank Borroughs Skinner, tudi Frederic Burhhus Skinner) je razvil svoj teoretski sistem v drugo smer kot neobehaviorizem. Oblikoval je behaviorizem, ki je brez predpostavk in je bolj strog kot klasični behaviorizem; imenujemo ga radikalni behaviorizem ali s Skinnerjevo oznako vedenjska analiza. Skinner je bil neomajni zagovornik determinizma – celotno obnašanje je pod nadzorom dražljajev. Predmet psihologije je obnašanje, ki ga je mogoče opazovati objektivno. Vse, kar ni opazljivo, ne more biti predmet znanstvenega raziskovanja in nobene potrebe ni, da bi delali hipoteze o tem. Dražljaji v celoti determinirajo obnašanje in ga v celoti pojasnjuje. Splošno načelo

FORMULA 1: OJAČEVALNA KONTINGENCA

\[SD : R \rightarrow SR^+ \]

Opombe: Po Skinnerju ustvari diskriminativni dražljaj (SD) priložnost (:) za odziv (R), ki izzove (→) ojačitev (SR+). Pri obnašanju poskusne živali v Skinnerjevi kletki bi ojačevalno kontingenco tvorili: vzdvod kot diskriminativna antecedentna okoliščina (SD:), **pritisk na vzdvod** kot dejanje (R) in **nagрадa** s hrano kot ojačenje (SR+).
Vir: Musek 2003, 194-203.

Izhodišča behaviorizma oz. enviromentalizma se pogosto uporabljajo v raziskavah učinkov okolja prodajalne (ang. store layout) na vedenje porabnika. Na primer, raziskave dražljajev lahko vključujejo dejavnike, ki jih je potrebno upoštevati pri načrtovanju prodajnega mesta: barvo, nared, množico ljudi, glasbo v prodajalni, dišave itd. Internetno prodajno mesto se glede teh dražljajev (S) značilno razlikuje od klasičnih prodajalnih okolij, kot vplivno spremenljivko organizma (O) lahko razumemo tudi porabnikovo nakupno orientacijo, ki je lahko posreden učinek klasičnega in elektronskega okolja (Dahlen 2001, 85). Nakupna orientacija porabnika je namreč čustveni odgovor na marketinške aktivnosti.
Dahlen pravi, da se dražljaji e-prodajalne glede na nakupno orientiranost porabnika odsevajo v spremenjenem nakupovanju. Očitno je tudi, da klasična in internetna prodajalna sestavljata dve popolnoma različni okolji za porabnika in vmesnika z različnimi dražljaji.
Zato lahko domnevamo, da se porabniki, glede na svojo nakupno orientiranost, obnašajo drugače pri nakupovanju po internetu.

2 Dahlen je na primer v svoji raziskavi kot nakupno orientacijo upošteval pet vrst nakupne usmerjenosti oz. vrste kupcev: apatični kupci, ekonomični kupci, kupci z željo po posebnem odnoso, etični kupci in rekreativni kupci.
1.7 Internet kot prodajni kanal in multikanalno nakupovanje

Ob preučevanju virov s področja vedenja porabnikov v multikanalnem nakupovanju se zdi to raziskovalno področje eno od zapostavljenih. Environmentalistični psihologi so na primer pri raziskovanju nakupnih navad usmerjali svojo pozornost predvsem na posamične prodajne kanale, vprašanja o izbiri in integraci kanalov pa so ostala neodgovorjena (Nicholson et al. 2001).

<table>
<thead>
<tr>
<th>Dimenzija</th>
<th>Primeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fizična</td>
<td>Geografske/virtualne/institucionalne/socio-kulturne lokacije, izgled prodajalne in izložbe ter izdelkov, atmosfera, ambient, znaki in simboli.</td>
</tr>
<tr>
<td>Časovna</td>
<td>Ura, sezona, bližina dogodka, časovne omejitve.</td>
</tr>
<tr>
<td>Kognitivna</td>
<td>Definiranje naloge/ciljna orientacija, iskanje informacij, procesiranje informacij, spomin, vpletanje znanja, hevrističnost.</td>
</tr>
<tr>
<td>Socialna</td>
<td>Prisotnost drugih ljudi, vključevanje sorodstva, socialne interakcije, socialne vloge in atributi.</td>
</tr>
<tr>
<td>Čustvena</td>
<td>Razpoloženje, počutje, stališča, predsedki, nagajanje, izvabljeni čustveni odzivi.</td>
</tr>
</tbody>
</table>

Opombe: Belkova taksonomija vključuje pet različnih dimenzij situacijskih vplivov. Po Belku je lahko vsaka porabnikova situacija opisana z navedenimi dimenzijami, spremenljivke se vtikajo glede (na osnovi) na izbiro odločitve o izbiri kanala.

V primeru raziskave novoletnih nakupov po vsaj dveh od treh kanalih podjetja (internet, katalog, prodajalna), so bili nakupovalci, ki so primarno uporabljali internet v prednakupnem iskanju informacij, bolj zadovoljni kot tisti, ki so uporabljali klasične prodajalne (Freed 2005, 3). Tisti, ki so nakupovali po internetu, so pokazali višjo stopnjo zadovoljstva, lojalnosti in močnejše nakupne namere v prihodnje. Porabniki očitno, ob odsotnosti predhodnega nakupovalnega načrta, bolj kupujejo iz tiskanih katalogov kot po internetu. Na odločitev, ali bo porabnik kupil po internetu in v tiskanih katalogih, so vplivali različni vizualni dejavniki (Barlas in Hoekstra 2002). Medtem ko je na internetu bolj pomembna čitljivost kot izpostavljenost, je izpostavljenost bolj pomembna v tiskanih katalogih. Pošiljanje dodatnih katalogov lahko povzroči pri lojalnih kupcih povečano internetno prodajo, pri najboljših kupcih pa celo zmanjšano prodajo zaradi odliva najboljših kupcev iz interneta v kataloški kanal (Anderson et al. 2005). Zato tisti multikanalni trgovci, ki ne upoštevajo medkanalnih konfliktov in komplementarnosti, vlagajo preveč sredstev v marketinške aktivnosti in si s tem celo zmanjšujejo prodajo.

Primerjava zaznanih koristi med kanali kaže, da so pri klasičnih prodajalnih zaznane koristi pozitivno povezane s starostjo, pri e-prodajalnih pa negativno, vendar so porabniki glede difuzije e-nakupovanja še vedno v začetni stopnji inovatorstva na internetu (Dholakia and Uusitalo 2002, 465-466). S kakšnim naklonom bo v prihodnje rasla krivulja difuzije e-nakupovanja ni mogoče napovedati, kljub temu da je porabnikovo poznavanje kanala (oz. količina izkušenj porabnika s kanalom) najmočnejši napovedovalec izbire (Li et al. 1999). Bolj izkušeni porabniki imajo namreč bolj pozitivne zaznave o uporabnosti interneta, zato bo e-nakupovanje raslo tudi v prihodnje, saj je na internetu vedno več izkušenih porabnikov, pa tudi ponudbe izdelkov/storitev. Splošno problematiko difuzije internetnega nakupovalnega kanala je Geoffrey Moor orisal s tehnološkim breznom.

SLIKA 4: BREZNO DIFUZIJE TEHNOLOGIJE

Opomba: Relativni delež porabnikov, ki opravljajo e-nakup, raste počasi zaradi zaznan nekoristnosti tehnologije.
Krivulja difuzije inovacije, ki je prerezana z breznom, kaže, da na začetku poganjajo tehnološki trg entuziasti (inovatorji in zgodnji adopterji). Ti zahtevajo tehnološko popolnost, večji del tehnološkega trga pa predstavljajo pragmatični in konzervativni porabniki, ki zahtevajo predvsem rešitve in prepričljivost. Med njimi je tranzicijska točka oz. brezno, kjer se morajo tehnološko orientirani izdelki transformirati in ponuditi porabnikom dodatno vrednost. Podobna situacija bi lahko veljala tudi glede problema e-nakupovanja.

Pomembno je tudi spoznanje, da je lahko internet ključna priložnost za rast pri vsaki multikanalni strategiji, saj krepi ugled blagovne znamke in poziva k nakupom porabnike, ki so najbolj lojalni kupci (Freed 2005).

V Sloveniji se je izkazalo, da vpliva internet posredno na potrošnjo pri 40 odstotkih uporabnikov interneta, 22 odstotkov uporabnikov pa je opravilo neposreden e-nakup v zadnjih 12 mesecih, tako da je internet vplival na nakupno obnašanje pri najmanj 60 odstotkih uporabnikov interneta (Vehovar in Šijanec 2005).
1.8 E-marketing

1.8.1 Izdelek

Primernost interneta kot orodja marketinga je odvisna predvsem od tipov izdelkov in njihovih lastnosti (Peterson et al. 1997), saj je potrebno upoštevati omejitve interneta, ki jih različni tipi izdelkov različno presežejo. Izdelke lahko delimo na primer v iskane in doživete izdelke (ang. search or experience goods). Iskane izdelke lahko porabniki vrednotijo glede na eksterne informacije, medtem ko morajo doživete osebno preveriti in preizkusiti. V kontekstu interneta so pomembne še tri dimenzije izdelkov (ibid.): delitev glede na stroške in frekvence nakupov, delitev glede na vrednost ponudbe in glede na stopnjo diferenciacije. Delitev glede na stroške/frekvence nakupov razvršča izdelke od pogosto kupljenih z nizkimi stroški (npr. živila) do redko kupljenih z visokimi stroški (npr. trajni izdelki, kot so avtomobili). Ta razvrstitev je najbolj uporabna pri ugotavljanju razlik v transakcijah na internetu in distribuciji stroških. Bolj pogosto in z nižjimi stroški ko se izdelki kupujejo (npr. mleko), manj primeren je internet kot marketiniško orodje. Delitev glede na vrednost ponudbe se nanaša na to, ali so izdelki otipljivi in fizični, ali neotpljivi in storitveno usmerjeni. Internet je v tej dimenziji bolj primeren za neotpljive izdelke z visoko frekvenco nakupov. Tretja delitev oz. dimenzija diferenciacije pomeni stopnjo, kako konkurenčna oz. superiorna je določena ponudba. Na učinkovito izvajanje e-marketinga lahko namreč vpliva ekstremna cenovna tekma, če izdelki ali storitve niso sposobni diferenciacije. To se na primer zgodi, če porabniki zaznajo izdelek kot masovni...
proizvod, delno zaradi odsotnosti pomembnih dejavnikov klasičnega okolja (kot je lokacija prodajalne) in delno zato, ker internet kot medij sam po sebi omogoča učinkovito cenovno primerjavo. Če so izdelki sposobni diferenciacije, lahko internet deluje kot odličen nakupovalni vodič, saj je iskanje ponudbe, informiranje in osebno pridobivanje vzorcev v klasičnem svetu dražje in bolj zamudno. V okviru diferenciacije so na internetu pomembne naslednje delitve (Görsch 2003, 53):

- na pokvarljive in nepokvarljive izdelke (pri pokvarljivih izdelkih je lahko problematična logistika in zelo primerna dinamična cenovna strategija),
- kustomizirane/nekustomizirane izdelke/storitve (ponudba po meri narejenih izdelkov je lahko močan vir diferenciacije in so zelo primerni za e-prodajo),
- funkcionalni/innovativni izdelki (innovativni so zelo primerni za internetno prodajo, potrebno pa je upoštevati zaznano tveganje zaradi nakupa po internetu).

Izdelki na internetu se razlikujejo tudi po tem, kako hitro morajo biti na voljo. Če je potrebna takojšnja zadovoljitev, e-kanal ni primeren, če ne gre za digitalne izdelke. To pomeni, da je potrebna hitrost dostave pogosto odvisna od nakupne situacije (npr. pijača, hrana, cigaret itd.). Precej pogosto uporabljena je tudi dvopolna delitev na funkcionalne in ekspresivne izdelke. Pri funkcionalnih izdelkih temelji nakupna odločitev na logičnih in racionalnih dejstvih, porabniki iščejo predvsem informacije o lastnostih, ki so neločljivo vezane na izdelek. Medtem ko je pri ekspresivnih (oz. izdelkih izražanja) pomembna psihološka interpretacija izdelka (Dahlen 2001, 40-41).

Girard et al. (2002) so ugotovili, da kategorije izdelkov značilno vplivajo na potrošnikove nakupne preference, podobno kot lastnosti prodajalca, ki pa jim porabnik pripisuje različen pomen glede na kategorije izdelkov:

- **iskani izdelki/storitve** (ang. search product/service); zanje lahko porabnik pridobi informacije pred nakupom na enostaven način, zato so porabniki prepričani o pravilnosti nakupne odločitve brez predhodnih izkušenj (npr. knjige in računalniki),
- **doživeti izdelki/storitve 1** (ang. experience-1 product/service); zanje pomembne informacije niso znane pred uporabo, zato porabniki ne morejo biti prepričani o nakupu brez predhodne uporabe (npr. oblačila in parfumi),
- **doživeti izdelki/storitve 2** (ang. experience-2 product/service) so podobni kot doživeti izdelki/storitve 1, vendar je zanje še težje in dražje pridobiti pomembne informacije o izkušnjah z izdelkom/storitvijo (npr. mobilni telefoni in TV sprejemniki),
- **izdelki/storitve zaupanja** (ang. credence product/service); pomembne informacije so na voljo šele po uporabi, saj niti uporaba testnih vzorcev porabnikov ne zagotovi najpomembnejših informacij (npr. vitamini in filtri vode).
Porabniki najraje kupujejo po internetu *iskane izdelke ali storitve*, za katere so informacije o lastnostih izdelka z najmanjšimi stroški enostavno dostopne že pred nakupom. Zato se porabniki počutijo bolj prepričane v izbiro pri e-nakupovanju. Če pa porabniki izdelke že pozajmo, potem ga lažje naročijo po internetu, ne glede na vrsto kategorije. Pri naročanju izdelkov zaupanja, ki jih porabniki najteže ocenijo in so pri njih še posebej omahljivi, so zelo pomembni pogoji distribucije izdelka.

1.8.2 Cena

Na cenvo izdelkov ali storitev je mogoče gledati kot na količino denarnih sredstev oz. kot na določen znesek v valuti, ki ga je potrebno plačati. Primer je neposreden (iz žepa ali s plačilno kartico) plačan znesek denarja za izdelek ali storitev. Po drugi strani pa porabniki tehtajo tudi nemonetarne elemente, kot so ocena fizično-psihološkega davka oz. "napor in izguba", ki se "plača" za izdelek ali storitev poleg osnovnega zneska in predstavlja razširjeno ceno (Talaga and Tucci 2001, 11). Razširjeni cenovni stroški so torej pripomljeni različni nemonetarni stroški, kot so stroški časa (iskanja in čakanja) ter različne vrste tveganja, povezanih z nakupom: finančno, socialno-psihološko, fizično in funkcionalno tveganje. Ker se lahko porabnik sooči z velikim številom elementov pri percepciji cene kot pribitkom denarni ceni, imajo s stališča porabnika tudi brezplačni izdelki ali brezplačne storitve svojo ceno.

Obiskovalci najprej porabijo čas za iskanje in vrednotenje izdelka. Več ko je porabljenega časa, višji so stroški izdelka ali storitve. Pri e-nakupovanju pomeni iskalni čas: trajanje iskanja, dostopanje, navigiranje in naročanje na spletni strani. Iskalni čas lahko reducira dober spletni design, kljub temu pa lahko dodatne stroške naložijo tudi oportunitetni stroški izbire. Bogatejša ponudba namreč poveča iskalni čas, manjša ponudba pa sicer
zmanjša iskalni čas, toda poveča verjetnost manjkajočih izbir. **Finančno tveganje** vpleta tveganje, da izdelek ne bo vreden plačane cene, **socialno in psihološko tveganje** pa zadrega porabnika ob napačni izbiri pred družino ali prijatelji. **Funkcionalno tveganje** pomeni možnost, da izdelek ne bo deloval po pričakovanjih. Osnovni denarni znesek torej ni odločilen, zato je ozka cena samo eden od elementov ocenjevalnega seta cene. Pri e-nakupovanju knjig je bila na primer cena šele tretji najpomembnejši dejavnik, pomembnejša sta bila razpoložljiva zaloga in politika vračila blaga in garancija (Talaga and Tucci 2001, 16-18).

1. izdelki niso homogeni, ampak se razlikujejo med seboj po dodanih povezanih izdelkih ali celotnem obsegu storitev, ki spremljajo transakcijo ("kvaliteta e-nakupne izkušnje", hitrost dostave, politika vračila blaga itd.). Zato na videz homogeni izdelki delujejo heterogeno,
2. do izkrivljenih nakupnih odločitev prihaja zaradi pomanjkanja zaupanja v: določenega prodajalca, blagovno znamko ali prenizko ceno (prenizka cena se zdi neresnična). Zato porabniki kupujejo pri zaupanja vrednemu prodajalcu,
3. stroški preskoka k drugemu trgovcu so višji, kot se zdi na prvi pogled. Na internetu je potrebno pri prvi prijavi izpolniti množico obrazcev in nato oblikovati uporabniški račun z geslom, kar so naloge, ki porabljajo čas, zato se stroški preskoka kažejo v višjih stroških. Domačnost določene prodajalne se kaže kot korist za porabnika, kar imenujemo "kognitivna vključenost" (ang. cognitive lock-in). Zato prodajalci preudarno povečujejo prestopne stroške, kar se kaže v različnih shemah lojalnosti,
4. primerjava cen porabnikom ni vedno razumljiva ali učinkovita, nekateri porabniki pa sploh ne primerjajo cen. Med tistimi, ki iščejo in primerjajo, pa intenzivnost iskanja upada z izkušenostjo. Če porabnik na primer pogosto potrebuje pomeni potovalnega agenta, potem raje teži k stiku z že najdenim, kot da ponovno primerja cene. To kaže, da je iskanje cen stroškovno obremenjujoče in včasih napora.

Poleg tega morajo agenti, ki omogočajo primerjavo cen, tudi preživeti, kar si zagotovijo z oglaševanjem ali zaračunavanjem najemnine trgovcem za uvrstitev na listo.

Internetno primerjanje cen je še vedno zamudno in porabnikom se včasih ne zdi vredno vlagati čas in napor zaradi majhnih razlik v cenah med prodajalci. Pri adopciji internetnih storitev so porabniki po določenem času uporabite tudi manj pripravljeni plačati za enako storitev (Sultan and Henrichs 2000, 397-398). Ugotovitev, da se tehnološka inovacija čez čas razvrednoti, imenujemo stopnja časovne prednosti in nam pojasnjuje, da so porabniki inovatorji pripravljeni v začetku prenesti višjo ceno ali višje nevalutne stroške, ki jih povzročajo različna tveganja pri prvih, poskusnih nakupih po internetu. Čez čas, ko so kupci že izkušeni in rutinirani ter e-prodajalna ne ponuja več novih inovacij, pa isti porabniki pričakujejo dodatne popuste za svoje e-nakupe ali nove, še inovativnejše vmesnike.

1.8.3 Komuniciranje

Spletné strani e-prodajalne

Na nakupne odločitve po internetu vplivajo lastnosti e-porabnikov, bolj inovativni so namreč manj podvrženi učinkom tveganja in hkrati zelo močni iskalci koristi (po Donthu and Garcia 1999, 52-58). Pri pomembnosti komunikacije in atraktivnosti izdelkov pa je mogoče zaslediti, da porabniki raje obiskujejo strani, od katerih prejmejo "atrizaktivno promocijo" in posledično na teh straneh tudi raje nakupujejo. Z vidika zaznavanja so dejavniki, ki na splošno najbolj vplivajo na stališče do spletnih strani: informativnost,
zabavnost in organiziranost. Ti dejavniki sestavljajo Chen-Wellsovo skalo, ki meri stališče do spletnih strani (AST, ang. attitude toward a website, Chen and Wells 1999). Stališče o spletnih straneh predstavlja prednika nakupne namere na internetu, poleg predhodnih e-nakupnih izkušenj, zaznane varnosti nakupovanja in zaznanih posledic za zasebnost ter prepričljivosti ponudbe (Staude and Morrison 2002). Tudi podobna raziskava stališč do spletnih strani in nakupne namere (Kumar and Bruner 2000, 35-42) je pokazala, da je med njima močna pozitivna korelacija, značilen pa je tudi pozitiven odnos med spletom izkušnjo in stališči do spletnih strani (A's), med spletom izkušnjo in nakupno namero pa ni bilo značilne povezave.

TABELA 2: CHEN-WELLSOV MODEL MERJENJA STALIŠČA O SPLETNIH STRANEH

<table>
<thead>
<tr>
<th>ZABAVA</th>
<th>OBVEŠČANJE</th>
<th>ORGANIZACIJA</th>
</tr>
</thead>
<tbody>
<tr>
<td>zabavno</td>
<td>informativno</td>
<td>neurejeno</td>
</tr>
<tr>
<td>razburljivo</td>
<td>pametno</td>
<td>nerodno</td>
</tr>
<tr>
<td>sveže</td>
<td>izobraževalno</td>
<td>zmedeno</td>
</tr>
<tr>
<td>iznajdljivo</td>
<td>domiselnos</td>
<td>razdražljivo</td>
</tr>
<tr>
<td>zanimivo</td>
<td>koristno</td>
<td></td>
</tr>
<tr>
<td>atraktivno</td>
<td>v pomoč</td>
<td></td>
</tr>
</tbody>
</table>

Opomba: Zanesljiva in veljavna skala, ki meri stališče do spletnih strani, je sestavljena iz treh faktorjev: zabava, obveščanje in organizacija. V primeru Chen-Wellsove raziskave je "zabava" pojasnila 36% variance stališča do spletnih strani, "obveščanje" 13% in "organizacija" 5% variance. Vir: Chen and Wells 1999, 32.

Kljub temu, da je oblikovanje spletnih strani prostorsko skoraj neomejeno, so količina in kakovost informacij prilagajata vrsti ponujenih izdelkov in storitev, pa so spletne strani tudi omejene, saj težje zadrževati mentalni zemljevid spletnih strani, zagotavljajo odzivnost in dvosmerno komunikacijo, kar predstavlja t.i. kakovost sistema. Strani morajo ponuditi tudi dobre storitve: porabnika morajo pravno in etično zaščititi, kar vodi do zaupanja, skrbno ponuditi individualizirane informacije, kar ustvari empatičnost do spletnega mesta. Takšne lastnosti predstavljajo t.i. kakovost storitve. Najboljše spletne strani vsebujejo tudi čustveno dimenzijo in dajejo vsaj človeške stika (ang. human touch), zato pravimo, da so atraktivne, kar je zadnji in zelo pomemben dejavnik privlačnosti strani.
Ob maksimalni prisotnosti obeh dejavnikov so se pokazale najvišje stopnje pri zadovoljstvu z e-trgovalnim okoljem in sprejemljivostjo tehnologije, zaupanju v odločitev in pri nakupni nameri (Jahng et al. 2000, 1395-1396). Pomembno je tudi vedeti, da porabnik tehta v nakupnem procesu med zaznanimi stroški e-nakupovanja (Brynjolfsson and Smith 1999, 563-585), koristni e-nakupovanja (Bellman et al. 1999, 32-38) in zanesljivostjo e-prodajalne (Rangaswamy and Gupta 1999).

Kustomizacija je pogosto povezan izraz z e-nakupovanjem in pomeni prilagoditev elektronskih vmesnikov potrebam obiskovalcev. Osebno prilagojene komunikacije namreč zmanjšujejo preobremenjenost z informacijami in pomagajo porabnikom pri odločitvah. Prilagojene komunikacije in marketinški programi tudi precej povečajo število obiskovalcev in pomenijo temeljni kamen trajnega odnosa podjetja s porabnikom (Asim and Mela 2000, 2).

Internetno oglaševanje

Porabniki vstopajo v interakcijo s podjetjem in se zanimajo za različne izdelke/storitve, ker si želijo pomagati v kompleksnem odločitvenem procesu. Zato vse spletne pasice (pasica, ang. banners) nimajo enake komunikacijske vloge in enako močan učinek. Dahlen pravi (2001, 28), da bi morale pasice pri izdelkih/storitvah, kjer so kupci močno vpletjeni v nakupovalni proces, delovati le kot transporterji do ciljnih spletnih strani, saj je namen takšnih pasic čim hitrejša preusmeritev obiskovalca iz oglaševalskega mesta na ciljne strani. Spletne strani so namreč zelo učinkovite pri vplivovanju na pozitivna stališča o blagovni znamki in lahko močno povečujejo nakupne namere pri izdelkih/storitvah. S takšnimi pasicami mora oglaševalc doseči čim višje razmerje med prikazi pasic in kliki nanje (RPK, ang. click through rate ali CTR)\(^3\).

\(^3\) RPK pomeni razmerje med prikazi in kliki pasic izraženo v odstotkih (tudi CTR, ang. click through rate). Koeficient se uporablja za merjenje učinkovitosti oglasa oz. spletnih pasic. Pove nam, koliko odstotkov tistih obiskovalcev, katerim je bil oglas prikazan, se je nanj odzvalo s klikom. Obstajata dve vrsti RPK: pri prvem RPK (vsi klik/vsi prikazi - vk/vp) delimo število vseh klikov z vsemi prikazi oglasa (ne glede na obiskovalce), pri drugem RPK (različni klik/različni prikazi, rk/rp) pa število klikov različnih obiskovalcev delimo s prikazi oglaševanj različnim obiskovalcem. Pri različnih prikazih sledijo oglaševalski sistemi obiskovalca navadno 24 ur. Mi bomo govorili o prvem RKP (vk/vp).
Na pasice, ki oglašujejo izdelke nizke vpletenosti, obiskovalci manj klikajo, zato mora biti primarni cilj teh pasic impresija in ne preusmeritev. V tem primeru niso najbolj pomembne spletne strani, ampak delujejo pasice kot primarno komunikacijsko orodje, saj se zdi, da prihodi iz pasic na spletne strani z izdelki manjše vpletenosti ne zvišajo stališča o blagovni znamki ali nakupne namere do izdelkov (ibidem, 10).

Pri izdelkih visoke vpletenosti pa je poleg intenzivnejšega klikanja na pasice prisotna tudi višja stopnja stališč, saj so imeli med porabniki močnejšo nakupno namero tisti, ki so kliknili na pasice. Medtem ko pri nizki vpletenosti ni razlik v nakupnih namerah med tistimi, ki so kliknili na pasice in tistimi, ki niso, zato so v tem primeru ciljne strani manjše vrednosti. Pri nizko vpletenih izdelkih se morajo uporabiti pasice z interaktivnimi lastnostmi, saj porabnik potrebuje le malo informacij za nakup, zato se lahko vse informacije posredujejo preko pasic.

Na odzivnost porabnika na spletno oglaševanje ima pomemben vpliv tudi tip izdelka (ibid., 10-11). Porabniki so bolj nagnjeni k klikanju na pasice s funkcionalnimi izdelki, ki posedujejo primarno negativne motive in racionalne odločitvene kriterije, kot klikanju na ekspresivne tipe izdelkov, pri katerih so prisotni primarno pozitivni nakupni motivi in manj racionalni odločitveni kriteriji. Funkcionalni izdelki so bolj subjekt iskanja informacij in eksplicitnega primerjanja izdelkov, ki se pokaže v potencialni večji pred-nakupni aktivnosti na spletu. Če je porabnik enkrat preusmerjen na spletne strani, se lahko obiskovalec informira o lastnostih izdelka in naredi primerjave. Zdi se, da pasice ne povečujejo stališč do blagovne znamke pri funkcionalnih izdelkih. Ekspresivni izdelki so subjekt manjše aktivnosti porabnikov na internetu. Porabniki ne klikajo na pasice zaradi razširitv predstavitev, saj je pozitivne emocije pri ekspresivnih izdelkih delujejo na povišanje stališč. Prav tako se zdi, da so porabniki, ki klikajo na pasice ekspresivnih izdelkov, bolj pozitivno naklonjen blagovni znamki. Pri teh izdelkih delujejo spletne strani najbolje po nakupu, ko se porabniki aktivirajo kot del procesa samotransformiranja. Zato delujejo pasice močnejše kot transporterji na ciljne strani pri funkcionalnih izdelkih, medtem ko pri ekspresivnih izdelkih delujejo skozi prikaze oz. impresijo (ibid., 37).

Na odzivnost porabnikov vpliva poleg kategorije izdelka tudi zaznava blagovne znamke. Pri znanih blagovnih znamkah so opazili visoko začetno stopnjo klikanja na pasice (visok RPK), ki kmalu pade zaradi ponovne izpostavitve oglasa. Obratni vzorec pa je zaslediti pri manj znanih znamkah, kar kaže, da je učinkovitost oglaševanja nanaša tudi na poznanost blagovne znamke. Znan blagovna znamka se hitro izrabi, zato mora generirati takojšnji odziv, medtem ko nepoznana potrebuje izpostavljenost, da pride v modo. Ta odziv je najbolj opazen pri novih porabnikih na internetu, saj manj izkušenih porabnik na slošno intenzivneje klikajo na pasice, zato je pri njih največja možnost povečanja zavedanja in stališč do blagovnih znamk. Zelo pomembna je ugotovitev, da prevelika izpostavljenost

1.8.4 Distribucija

Pri e-nakupovanju je torej ključna zanesljivost in hitra dostava. Logistični standard za t.i. zadnji kilometer (ang. last mile) mora biti visoko postavljen, da doseže porabnikova pričakovanja: zaradi oglaševanja dostave, ujemanja s porabnikovimi časovnimi režami, izvedbe hitre dostave in nizkih stroškov. Kasneje ko doseže naročeno blago porabniku, večja je verjetnost, da bo zavrnjeno. Prepričljivo e-nakupovanje vključuje tudi možnost enostavnega vračila blaga, ki niso dosegla porabnikovih pričakovanj, kar predstavlja dodatne stroške podjetja, zahteva pa tudi izpopolnjen povratni logistični sistem. E-prodajalna mora biti namreč sposobna pokriti tudi t.i. "spice" naročanja, kot je na primer
za božič, kjer lahko predstavlja logistika ozko grlo poslovanja e-prodajalne. Če prejme porabnik slabo izkušnjo z e-prodajalno pri pravočasnosti paketa, ne bo več nakupoval v določeni e-prodajalni, pa tudi ne po internetu kot ekvivalentnem kanalu tradicionalne trgovine. Zanimiva je tudi logistična študija ECR Europe (2000), ki se je osredotočila na S-logistični tok, vezan na uspešno izvršitev naročila v e-prodajnem sistemu.

SLIKA 5: S-LOGISTIČNI MODEL E-PRODAJALNE

Opombe: Sekundarni S-logistični model sestavlja širje tokovi z različnimi stopnjami operativnih opravil. Če želi e-prodajalec oblikovati operativni poslovni model, mora rešiti številna vprašanja. Če tokove dodatno podaljšamo v nabavno verigo, dobimo primarni oz. razširjen S-model.

Glede na študijo lahko klasificiramo poslovne modele e-prodajaln s pomočjo naslednjih dejavnikov: širino asortimana, vrsto izdelkov glede na njihovo manipulacijo, vrsto storitve na mestu dostave, mesto dostave, regijo delovanja in hitrost dostave. Od šestih najpomembnejših dejavnikov e-prodajaln jih je pet tesno povezanih z logističnimi operacijami oz. politiko dostave. Raziskava tudi namiguje, da je uspešnost e-prodajaln odvisna predvsem od logističnega modela. Raziskava Global Online Retailing Report (Ernst & Young 2001, 2) pa je ugotovila, da so porabniki najbolj nezadovoljni s stroški dostave, saj so stroški pošiljanja povzročili največjo skrb e-nakupovalcem. Rangirani so bili celo kot najpomembnejši dejavnik, ki odvrača od e-nakupovanja, in so primarni vzrok opuščanja nakupovalne košarice.
1.9 Porabniki na internetu

Zato je videti, da je uspešnost internetnega trženja odvisna od porabnikovih lastnosti (predvsem izkušenosti) in zaznavanja e-prodajalca, kar ustvarja nakupno vedenje oz. akcijo porabnika. V tem poglavju bomo govorili predvsem o odnosih med porabniki in multikanalnimi trgovci.

1.9.1 Zaznavanje

Najpomembnejši dejavniki porabnikove percepcije podjetij, ki multikanalno tržijo izdelke ali storitve (Görsch 2003, 113-133) so: povečano zavedanje prodajalca in blagovne znamke, zaupanje, tveganje, kontrola, preprčljivost ponudbe, poudarjena (storitvena) podpora in personalizacija. štiri dejavnike lahko označimo kot notranje (zavedanje, zaupanje, tveganje in kontrola situacije), trije pa so v bistvu najpomembnejše storitve multikanalnega prodajalca, ki vplivajo na pozitivno zaznavanje porabnikov (preprčljivost ponudbe, poudarjena podpora in personalizacija). Zato bomo govorili o njih v poglavju o elementih uporabniške izkušnje.

Zavedanje

Na splošno se uporablja promocija za povečanje zavedanja o blagovni znamki in vpletanje porabnikov v prvi stadij nakupnega procesa, to je zaznava potrebe in iskanje informacij. V multikanalnem okolju lahko porabniki izbirajo več poti oz. kanalov za proučitev novih izdelkov ali rešitev njihovih problemov. Ta možnost povečuje njihovo zavedanje, s tem pa tudi verjetnost srečanja s potencialno rešitvijo zaznanega problema. Prav tako se poveča verjetnost, da si bodo porabniki ponudbo bolje zapolnili, če so izpostavljeni promocijam za isti oz. podoben izdelek po različnih kanalih. Dodatno imajo porabniki na voljo zaradi različnih kanalov tudi več orodij za določanje ustreznih lastnosti izdelka. Porabnik ima tudi
več kontrole v procesu prepoznavne potrebe, saj izbere kanal, ki ga želi pri učenju oz. informiranju o možni rešitvi (izdelku/storitvi). Elektronski katalogi lahko dodatno stimulirajo zavedanje z najmanjšim naporom za porabnika: vse kar je potrebno storiti, je prebrskati katalog. Na internetu so na primer uporabni tudi sistemi za priporočanje, ki lahko stimulirajo impulzivne nakupe ali pomagajo porabnikom pri določanju želenih lastnosti izdelkov (Görsch, 102, po Schafer et al. 1999). Kot največja prednost interneta pa velja (tako pri priporočanju izdelkov, kakor pri e-poštnem sporočanju), da so lahko vsebine personalizirane glede na porabnikove preference in jih zato manj nadlegujejo ter jim podajajo večjo vrednost ponudbe. Povečano zavedanje porabnikov o e-prodajalcu, njegovi znamki, izdelkih in storitvah ter o različnih kanalih lahko e-prodajalci najmočneje oblikujejo s pomočjo multikanalne integracije tržnih aktivnosti, kar poveča pridobivanje porabnikov, penetracijo in zmožnost ohranjanja že obstoječih kupcev.

Zaupanje

Eden pomembnejših dejavnikov, ki je povezan z zaupanjem do e-nakupovanja, je tudi blagovna znamka. Blagovna znamka ni pomembna pri vseh izbiri, pomembnost pa je odvisna od širine informacij o izdelku. Blagovna znamka je pomembnejša v pogojskih pomanjkanja informacij (Degeratu et al. 1999, 1-45).

Senzori iskalni atributi fizičnih prodajal (npr. embalaža) imajo na internetu manjši vpliv, vplivneja so faktografska dejstva. Zaupanje je močno pozitivno povezano še z interaktivnostjo spletnih strani, pomanjkanje zaupanja pa odvrača porabnike od naročanja po internetu (Merrilees and Fry 2003, 126-128).
Tveganje

4 Najpogostejše vrste tveganj v okvirih raziskav e-nakupovanja: tveganje kvalitete, finančno, psihološko in časovno tveganje.
Kontrola

Zaznana kontrola nad situacijo je ena izmed najmočnejših potreb, visoko zaznana kontrola pa se izraža z večjim zadovoljstvom s storitvijo. Ena od dimenzij kontrole je kontrola izbire, ki se poveča, če porabnik zazna izbiro. Druga dimenzija kontrole je vedenjska kontrola, ki jo poveča odzivnost prodajalca, tretja dimenzija kontrole pa je kognitivna kontrola in se nanaša na to, kako dobro zna porabnik predvideti in interpretirati situacijo. Multikanalni trgovci lahko dajo porabnikom višjo stopnjo kontrole kot katerikoli tip enokanalnega prodajalca. Porabnik lahko namreč izbira, kje bo izvajal kakšno nakupno aktivnost. V teh pogojih je prodajalec v očeh porabnika bolj prepričljiv, saj lahko kadarkoli zamenja kanal v procesu nakupovanja, kadarkoli na internetu ali v klasičnem svetu.

1.9.2 Lastnosti e-porabnikov

Izkušenost

Z zmanjšanjem kognitivnega napora je povezan tudi učinek zmanjšane vpletetnosti, saj si neizkušeni obiskovalci najpogosteje nalagajo reševanje razširjenega problema. S ponavljanjem in pooblaščanjem reševanja problema postaja izvrševanje vedno bolj rutinirano in manj vpletene, kar je še posebej pomembno ob pogojih časovne stisne ali informacijske preobremenjenosti. Ker se s povečanjem izkušnje manjša porabnikova vpletetnost, postaja porabnik rutinski in praktičen, zato brskanje ne nudi več takšnega zadovoljstva, kar pomeni, da je na internetu težje privlačiti bolj izkušene uporabnike, ki na splošno manj brskajo po internetu. Ena od tržnih strategij na to temo je neprestano menjavanje izgleda e-prodajalne. Avtomatizem je najbolj ekstremen primer povečane izkušnje, ki zmanjšuje kognitivni napor. Vendar je potrebno vedeti, da se je vpletetnost pokazala kot poglavitna determinanta odziva na oglasovanje, saj je odziv posledica visoke
vpletenosti. Srednja vpletenost ima pozitiven efekt, medtem ko prevelika negativna ali prevelika pozitivna stopnja vpletenosti negativno učinkujeta na stališča in spomin do oglaševanja.

Inovativnost

Citrin et al. (2000, 298) pa so našli še posrednika v odnosu med **uporabo interneta** in **adopcijo e-nakupovanja**, ki jo prevzema t.i. **področna inovativnost** (ang. domain-specific innovativeness). Osebe, ki kupujejo po internetu, niso nujno inovativne same po sebi (ang. open-processing innovativeness, izraz pomeni splošno osebno odprtost za novosti pri vseh zadevah). Vendar pa so te osebe gotovo področno inovativne oz. inovativne glede e-nakupovanja po internetu. Dokaz področne inovativnosti so osebe, ki "morajo" uporabljati internet pri delu (imajo visoko stopnjo **uporabe interneta**), vendar niso inovativne v tem specifičnem področju, saj jih pogosto ne zanimajo druga opravila kot tista, kar morajo narediti, zato je manj verjetno, da bodo e-nakupovale.
Nakupna orientiranost

5 Načrtovanje nakupov je Dahlen v svoji raziskavi analiziral v okviru treh tipov nakupovalnih vzorcev: nakup živil na zalogu (npr. tedenski nakup), komplementarni nakup (npr. nakup hrane za večerjo po poti iz službe) in nakup enega izdelka. Seveda se struktura pogostosti vzorcev razlikuje od porabnika do porabnika. Tisti, ki delajo več nakupov enega ali komplementarnih izdelkov, manj načrtujejo in naredijo več obiskov v prodajalni kot kupci, nagnjeni k nakupovanju na zalogu. Le-ti imajo daljše intervale med obiski in imajo na splošno močnejšo navado načrtovanja.
Dahlen (2001, 91-102) je glede nakupne orientiranosti ugotovil, da se je večina kupcev na internetu opredelila za apatične (80 odstotkov), kar je neprimerno večji delež kot v klasičnih trgovinah z živili, kjer je bilo takšnih od 17 do 35 odstotkov. Apatični kupci vidijo nakupovanje kot nujen, toda neprijeten opravek, ki ga je potrebno opraviti hitro, kolikor je le mogoče. Pomemben delež na internetu predstavljajo tudi ekonomični kupci (12 odstotkov), kar je ravno obratno kot v klasičnem svetu, kjer pogosto predstavljajo največjo skupino (od 27 do 48 odstotkov). Ekonomični kupci se imajo za racionalne, ciljno orientirane in iščejo maksimalno vrednost v zameno za svoj denar. Dahlen je opozoril tudi na dejstvo, da je nakupna usmeritev kupca odvisna od kategorije izdelkov, saj lahko pri neprehrambenih izdelkih prevladujejo druge vrste kupcev, ki so bile v tem primeru slabše zastopane (kupci, ki želijo poosebljen odnos, etični kupci in kupci, ki jim pomeni nakupovanje "rekreacijo"). Internetni kupci bolje načrtujejo nakupe v primerjavi s klasičnimi in so manj občutljivi na marketinške aktivnosti, kar se lahko pripiše tudi različnim dražljavam v prodajalni, saj spletni vmesniki v marketinškem smislu niso dobro oblikovani.

Elderjeva segmentacija uporabnikov interneta v ZDA pa je pokazala pet razredov e-nakupovalcev (Papič 2002, 83): močni kupci (v povprečju potrošijo dvakrat več kot povprečni internetni kupci), novinci (predstavljajo mlajo generacijo z relativno nizkimi dohodki), generacija plastičnih kartic (predstavljajo mlajo generacijo z nižjimi dohodki, ki je prepričana v varnost poslovanja na internetu), previdni nakupovalci (predstavljajo največji segment internetnih uporabnikov, vendar še niso prepričani v koristnost e-nakupovanja ali pa jih ni prepričala varnost uporabe kreditne kartice na internetu) in e-skopuhi (predstavljajo starejšo generacijo, ki se je modernizirala in ni pretirano zainteresirana za koristi, ki jih ponuja e-nakupovanje, vendar pa je prepričana v varnost in prihranek časa). Papič (70-85) je tudi sam segmentiral e-nakupovalce v Sloveniji in oblikoval štiri reprezentativne skupine:
• **mlačneži** (19 odstotkov predstavnikov, kupovanje po internetu jih niti ne privlači niti ne odbija, so skeptični glede varnosti, blago želijo videti pred nakupom, nagibajo se k temu, da je blago kupljeno po internetu, mogoče celo enake kakovosti kot blago v klasični prodajalni, glede informacij in cen na internetu pa ne kažejo niti negativnega niti pozitivnega mnenja),

• **stalni nakupovalci** (33 odstotkov predstavnikov, e-nakupovanje je stalna praksa, glede varnosti so neodločeni, za nakup jim zadostuje že ogled izdelka na internetu, so zelo prepričani, da je blago enake kakovosti kot v prodajalni, internet imajo za relativno dober vir informacij in medij, na katerem lahko dosežejo nižjo ceno),

• **nedeljski nakupovalci** (35 odstotkov predstavnikov, občasno se odločajo za nakupovanje po internetu, nakupovanje pri znanih internetnih prodajalcih jim daje občutek varnosti, blago želijo pred nakupom videti, verjamejo, da je blago enake kakovosti kot v prodajalni, nagibajo se k dejstvu, da na internetu ne najdejo dovolj informacij, glede cen na internetu pa nimajo izoblikovanega mnenja) in

• **zelenci** (13 odstotkov predstavnikov, redko se odločajo za nakup preko interneta, niso prepričani v varnost nakupovanja po internetu, pred nakupom želijo obvezno videti blago, so neodločeni glede kakovosti, internet je zanje slab vir informacij, niti medij boljše cene.

• **e-nakupovalci I. reda** (tisti, ki so na osnovno vprašanje:"Ali ste v preteklem letu preko interneta v zasebne namene opravili kak nakup?" odgovorili pritrdilno. Odgovor pomeni ožjo definicijo e-nakupovalca, njihov delež v decembru 2004 je bil 24 odstotkov respondentov),

• **e-nakupovalci II. reda** (tisti, ki so na osnovno vprašanje sicer odgovorili z NE, vendar so na vprašanje:"Ali ste v preteklem letu preko interneta v zasebne namene morda vsaj naročili oz. vsaj plačali kakšen izdelek/storitev?" odgovorili pritrdilno (širša definicija); njihov delež je obsegal 15 odstotkov respondentov). E-nakupovalce II. reda pa deli raziskava v tri podskupine:
 a) tisti, ki pri določenih nakupih po internetu opravijo e-naročilo, pri drugih pa e-plačilo,
 b) tisti, ki pri vsakem nakupu opravijo vsaj e-naročilo,
 c) tisti, ki pri vsakem nakupu opravijo vsaj e-plačilo.

Največje razlike med obiskovalci, ki kupujejo po internetu, in kupci klasičnih prodajaln so vidne po starosti, spolu, izobrazbi in dohodku. V raziskavi KPMG and Indiana University (2004a) so ugotovili, da je pri osebah, mlajših od 25 let pomembnejša zabavnost

Motivi e-nakupovanja

Internetno in fizično okolje nudita različno nakupno izkušnjo, četudi gre za nakupovanje enakih izdelkov. S pomočjo fokusnih skupin so ugotovili, da so pri e-nakupovanju največkrat prisotni ciljno usmerjeni in koristoljubni vzroki, nekaj pa je eksperimentalnih nagibov porabnikov (Wolfinbarger and Gilly 2000, 1362-366). V zvezi s koristoljubnimi motivi so porabniki največkrat omenjali pojma svoboda in kontrola nakupovanja (manj pritiska, brez obvez, udobnejše počutje, svobodnejše odločitev o času nakupa). Najmočnejše lastnosti e-prodajaln, ki pospešujejo ciljno usmerjeno nakupovanje, so bile dostopnost in prepričljivost, izbira izdelkov, niz informacij in kontrola nad družbo nakupovanja (npr. ni neželene nakupovalne družbe s strani prodajne pomoči ali nakupovalnih partnerjev). V eksperimentalnem smislu se z dejavniki zabava, prijetnost in družabnost pogosteje opisujejo klasični kot e-nakupi. Porabniki največkrat omenjajo brskanje in e-nakupovanje zaradi avkcij in kupčij ter iskanje informacij za lastne hobije.

Glede razlogov e-nakupovanja se je pokazalo, da večino porabnikov motivira prihranek časa. E-nakupovalci najpogosteje pričakujejo osebno prilagojeno storitev po sprejemljivi ceni, nakupovanje brez razprodanih zalog ter napak pri dobavi, našel pa se je tudi 15-odstotni delež porabnikov, ki je navajal klasične ovire pri izhodiščih iz stanovanj (Morganosky and Cude 2000, 17-24)

Najpogosteji raziskovalni tokovi motivov, ki vplivajo na odločitve v elektronskih trgih so (Bellman et al. 2004): pristopi ekonomike iskanja (ang. economics of search approaches), pristopi kognitivnih stroškov (ang. cognitive cost approaches), pristopi oblikovanih preferenc (ang. constructive preference approaches) in pomenski pristopi (ang. phenomenological approaches). Osnovna ideja pristopa ekonomike stroškov je, da porabnik optimizira odločitev na podlagi stroškov iskanja, saj redukcija stroškov iskanja poveča porabnikovo blaginjo in učinkovitost trga. Perspektiva kognitivnih stroškov smatra iskalne stroške kot neenoten konstruktni in jih naprej deli na npr. stroške iskanja informacij o ceni in stroške ugotavljanja kredibilnosti prodajalca. Tudi vidik ekonomike
stroškov lahko temelji na vključitvi kognitivnih stroškov, kar pomeni, da je mišljenje strošek, ki se doda k eksternemu iskanju (npr. ekonomični modeli po navadi povzemajo, da se informacija o znamki, ki se enkrat najde, tudi ohrani in prikliče brez stroškov). Pogled oblikovanih preferenc pa vsebuje nasprotno predpostavko od prejšnjih dveh pogledov, saj nagnjenja porabnikov niso v naprej dobro znana in določena ter so pogosto oblikovana kot funkcija naloge in okolja. Internetni trg kot odločitveno okolje so namreč idealni pri vplivu na oblikovanje nagnjenj in končno izbiro. Pomenski pogled (oz. fenomenološka metoda, ki reducira predmet zavesti na bistvo) pa kontrastno s prejšnjimi pristopi, ki zajemajo stroške iskanja, poudarja izkušnjo izkušnje in končno izbiro. Hedonična izkušnja je namesto stroškov sama po sebi plačilo in uživanje pri iskanju je lahko večplastno. Pomenski pogled meni, da e-prodajalne niso oblikovane le v pomoč pri odločitvah, ampak tudi za kreiranje vtisa oz. impresije, ta dva cilja pa sta lahko med seboj konfliktna. Primer je lahko izkušnja toka, v katerem oseba popolnoma osredotočena pozornost na nalogo (kot je brskanje po internetu) in izloči nepomembne misli, kar se lahko odraža v popolni izgubi obutka časa. V tem stanju miselnega toka pomeni čas majhen oportunitetni strošek, kar razširi obseg iskanja.

1.9.3 Elementi uporabniške izkušnje

Na splošno pa veljajo kot najpomembnejši naslednji dejavniki spletnih strani e-prodajaln: politika storitev, prikaz kontaktnih informacij in prepričljivost ponudbe ter enostavnost uporabe strani. Zadovoljstvo s spletno izkušnjo v e-prodajalni najbolj povečujeta prepričljivost spletnih strani in enostavnost designa, ki omogoča hiter dostop do informacij o izdelkih ali storitvah (Shim et al. 2002). Pokazalo se je tudi, da porabniki prekinejo nakupne aktivnosti, ko je stran prezapletena za navigacijo, kar pomeni, da neokrepljena pričakovanja o spletni predstavitvi vodi k prekinitvi nakupovanja.

V primeru raziskave e-nakupovalcev KPMG and Indiana University (2004) so se porabniki najbolj strinjali (več kot 70 odstotkov respondentov), da morajo imeti (ang. must have)
e-prodajalne objavljene cene izdelkov, brezplačno telefonsko številko, možnost sprejema pošiljke na domačem naslovu ali pisarni in potrditev naročila po e-pošti. **Morale pa bi imeti tudi** (ang. should have, tudi več kot 70 odstotkov respondentov) informacije o zalogi blaga, listo novih izdelkov, informacijo o zalogi istih izdelkov v lokalni trgovini in možnost vračila blaga v lokalno prodajalno. Na splošno so porabniki zahtevali od e-prodajalne predvsem primerne **informacije** o izdelkih in njihovih cenah, prepričljivino in varno naročanje, sledenje naročilom, zanesljivo dostavo in sprejemljive storitve.

Višja zaznana kakovost storitve na internetu vpliva posredno in neposredno skozi povečano zaupanje tudi na lojalnost (Gefen 2002, 27), ki je bistvena prednost mnogih e-prodajalcev, saj so stroški privabljanja porabnikov visoki, porabnike pa je nato težko zadržati.6 Reichheld and Schefter (2000) poudarjata, da glede lojalnosti do e-prodajalca ni ključna determinanta cena, ampak zaupanje, ki pa se zgradi s "konsistentno dostavo superiornih izkušenj za porabnika".

Kakor smo že omenili, Görsch (2003, 113-133) navaja tri vrste storitev, ki ključno vplivajo na porabnikovo zaznavanje e-prodajalca: **prepričljivost, poudarjena podpora in multikanalna personalizacija.**

Prepričljivost

6 Pet dimenzij kvalitete storitev e-prodajalcev v modelu SERVQUAL so se v Gefenovi raziskavi na internetu zrušile v tri dimenzije kvalitete e-storitev: otipljivost, empatija in tretji dejavnik, ki je kombiniran dimenzija odzivnosti, zanesljivosti in jamstva (zaravoranja, ang. assurance). Otipljivost je najbolj pomembna pri dvigovanju potrošnikove lojalnosti, kombinirana dimenzija pa pri povečevanju potrošnikovega zaupanja do e-prodajalca.
Poudarjena podpora

Podpora porabnikov na internetu postaja vedno pomembnejša zaradi konkurenčnega okolja. Storitve podpore pomenijo dobrino izkušnje, saj se morajo koristiti, da se spozna njihova kakovost. Podpora porabnikov pa nasprotno od prepričljivosti ne zmanjša napor ali skrajša čas, ampak izboljša nakupno izkušnjo.

Študija KPMG and Indiana University (2004b) ugotavlja, da lahko klasični trgovci odgovorijo na izzive interneta tako, da uporabijo internet kot pomoč porabnikom pri nakupovanju v njihovih prodajalnih in s tem povečajo vrednost že obstoječih lokacij. Polovica porabnikov čuti, da je prednost za klasičnega prodajalca, če promovira svoje blago na internetu, porabniki s takšnimi stališči pa so bili tudi najbolj entuziastični nad tehnologijo, ki integrira internetne s fizičnimi aktivnostmi: e-prodajalna lahko na primer najavi nove izdelke, osvetli posebne ponudbe, pusti porabnikom vpogled v zalogo, ponuja video posnetke in 3D modele klasične prodajalne itd. Ključno je, da bodo porabniki sprejeli novo tehnologijo, če bodo zaznali povečano nakupno izkušnjo.

Naprednejše e-prodajalne lahko nudijo porabnikom celo različne pomočnike (e-agente), ki pospešujejo procesiranje informacij in varujejo porabnika pred preoblim informacij (ang. information overload). Ti elektronski pomočniki se navajajo kot nakupni elektronski pomočniki oz. e-agenti. V interaktivnem kontekstu so elektronski pomočniki (ang. electronic decision aids) mehanizmi, ki so razviti v pomoč komunikacije med porabnikom in e-prodajalcem ter v pomoč porabniku pri nakupni odločitvi (Girish in Rapp 2003). Na splošno lahko označimo e-agente kot individualne (za iskalne kriterije uporabljajo atribute, ki jih vnesejo individualni uporabniki) ali kolaborativne (za iskanje uporabljajo ocene istega izdelka predhodnih porabnikov in generirajo listo alternativnih izdelkov ali primerjalno matriko). E-agenti lahko izboljšajo kvaliteto odločitve in zmanjšajo napor, ki je vložen v odločanje. Pogosto zahtevajo spletni vmesniki veliko osebnih podatkov o obiskovalcih in podrobnih podatkov o izdelku, zato morajo e-agenti kreirati zaupanje in kredibilnost.

Multikanalna personalizacija

Personalizacija pomeni, da prodajalec zbira informacije o porabnikih z namenom, da jih bolje razume in nato uporabi v aktivnostih za njihovo zadržanje oz. ponovne nakupe. Personalizacija zahteva, da prodajalec zbira informacije o porabnikih tako, da jih eksplicitno vpraša za njihove preference ali pa z opazovanjem vedenja. Pojem personalizacija se razlikuje od kustomizacije, kjer porabnik individualno izbira izdelek ali lastnosti storitve, ki so z njim povezane. Kustomizacija tudi v naprej ne predpostavlja zbiranja informacij. V namen personalizacije zbira prodajalec informacije o porabniku po
vseh kanalih in jih potem uporablja po posameznih kanalih. Porabniki zaznajo multikanalno personalizacijo kot korist, saj lahko neposredno dostopajo do osebnih informacij po enem kanalu (vsu prejšnja naročila, poseben status pri promocijah itd.). Personalizacija se lahko ponudi tudi po več različnih kanalih, ki vzdržujejo med seboj personaliziran nabor prednostnih informacij, zato je promocija izdelka porabniku bolj zanimiva. Kljub temu pa vsi porabniki ne dovolijo zbiranja osebnih informacij, zato mora prodajalec najti dovolj veliko skupino porabnikov, ki se odzove na njihov program personalizacije.

1.9.4 E-nakupni proces

Nakupni proces porabnikov po internetu (zbiranje informacij, evaluacija, nakup, ponakupna evaluacija) je enak kot v tradicionalnem svetu, vendar se izvaja hitreje in bolj temeljito, porabniki pa so vanj večinoma bolj vpleteni (Jayawardhena et al. 2004, 63-64). Obstaja več prikazov nakupnega procesa, vpliv multikanalne integracije pa je Görsch (2003, 96-112) opisal v mešanem modelu nabave in porabe (ang. purchase and consumption process, PCP) z naslednjimi stopnjami: problem in zaznava potrebe, iskanje informacij, ocenjevanje in izbira, naročanje, plačilo, prejem izdelka, zamenjava in vračilo, uporaba in poraba, popravilo. Görsch opisuje učinke integracije kanalov po posameznih stopnjah nakupnega procesa:

- v stopnji problema in zaznave potrebe se porabnikom poveča zavedanje zaradi multikanalne interakcije s podjetjem, porabniki se seznanijo z drugimi kanali podjetja, vsak kanal ponuja sebi primerno predstavitev izdelkov in s tem povečuje možnost zaznave potrebe. Zaznavanje porabnikov se lahko poveča tudi zaradi multikanalne personalizacije;
- v stopnji iskanja informacij pospešujejo iskanje informacij napredni spletni vmesniki, osebno svetovanje in predstavitve izdelkov v klasičnih prodajalnah. Mnoge odločitvene možnosti zmanjšujejo zaznano tveganje glede napačne odločitve, zato se poveča prepričljivost ponudbe in kontrola iskanja. Internet lahko še dodatno poveča zaupanje v informacije o izdelku, kljub temu da je porabnik že obiskal klasično prodajalno. Internet je v tej stopnji zelo primeren za informiranje o lokacijah prodajalnih in njihovem delovnem času, za naročanje novih katalogov in prikaz zaloge izdelkov;
- v stopnji ocenjevanja in izbire ima porabnik možnost vzporedne izbire med kanali, kar zmanjšuje tveganje, saj lahko kombinira možnosti;
- v stopnji naročanja se porabniku poveča zaupanje zaradi integracije e-prodajalne s klasičnimi prodajalnami, naročanje je mogoče kjerkoli in kadarkoli, ko doseže porabnik kanal naročanja;
- v stopnji prejema izdelka izbira porabnik med lastnim prevzemom v prodajalni ali pošiljanju izdelkov na želeno lokacijo, zaradi možnosti osebnega vračila blaga v
prodajalno pa se zmanjša tveganje glede kakovosti izdelka; nekatere e-prodajalne
nudijo porabnikom celo sistem sledenja blaga. Zaupanje v e-prodajalcu se dodatno
poveča z osebnim stikom, če kupec prevzame blago v klasični prodajalni;

- v stopnji zamenjave in vračila se odloča porabnik med osebnim vračilom ali
 povratnim pošiljanjem izdelkov po pošti. Možnost enostavnega vračila blaga
 zmanjšuje tveganje in povečuje zaupanje zaradi osebnega stika s prodajalcem ob
 osebnem vračilu;

- stopnja popravila ponuja možnosti dodatne elektronske podpore (npr. nasveti za
 izdelke, ki so bili kupljeni v klasični prodajalni, personalizirani e-garancijski listi,
 seznam pooblaščenih servisov). Zaupanje v e-prodajalno lahko povečuje tudi
 komunikacija s tehnično pomočjo v prodajalni.

Zaradi narave e-nakupovanja je v literaturi največkrat omenjena in poudarjena stopnja
iskanja informacij. Potrošniki se pogosto vedejo pri iskanju informacij tako, da
vključujejo informacije v odločitveni proces po stopnjah: najprej filtrirajo alternative, ki so
na voljo, potem pa naredijo podrobnejše primerjave v zmanjšani razvrstitvi alternativ.
Takšna tipična strategija zahteva kakovost in količino informacij (Ha 2002). Količina
informacij je potrebna, ker pomaga porabnikom pri ocenjevanju niza konkurenčnih
blagovnih znamk. Kakovost informacij pa se veže na točne in tekoče informacije o
blagovni znamki, ki so bistvene za končno odločitev. Zato deluje kakovost informacij kot
kontrola primerne odločitve. Pri procesiranju informacij je lahko problematično tudi
njihovo preoblikovanje, kar preobremenija porabnika. Park in Kim (2003, 25) menita, da je ključna
značilnost, ki vpliva na potrošnika pri iskanju izdelkov in nakupovanju po internetu,
kakovost informacij o izdelku. Ključne koristi e-nakupovanja so namreč informacije na
zaslonu, ki reducirajo stroške iskanja in obdelave informacij.

Primerjava med nakupovanjem po tiskanem in elektronskem katalogu je pokazala, da
aktivno iskanje izdelkov reducira pomen izpostavljenim izdelkom, na splošno poveča
spomin za izdelke in vodi k bolj prijetni nakupni izkušnji (Barlas in Hoekstra 2002). V
pogojih aktivnega iskanja so subjekti sicer pregledali manj strani, vendar je bila raziskava
izdelkov kljub temu bolj temeljita.

Po drugi strani pa je v literaturi najbolj prezrta stopnja popravila in porabe ter vračila
blaga, čeprav so te stopnje v e-prodajalni logistično najbolj zahtevne. V teh stopnjah
razlikujemo med zadržanimi in odpadli mi porabniki, v primeru e-storitev pa so
najpogostejši vzroki opustitve družbeni vpliv, zaznana koristnost storitev, zadovoljstvo z
uporabo in morebitna uporaba nadomestka v času začetne adopcije (Parhasarathy and
2 MERKURJEVO E-KOMUNICIRANJE S PORABNIKI

2.1 Spletne strani e-prodajalne nakup.merkur.si

SLIKA 6: VSTOPNA STRAN E-PRODAJALNE NAKUP.MERKUR.SI

Opmoči: E-prodajalna je namenjena poslovanju s potrošniki (B2C), je uporabniku prijazno zasnovana in se drži Merkurjeve celostne podobe, kar prekpi tudi blagovno znamko podjetja.

2.2 *E-pošta*

Eno najpomembnejših komunikacijskih orodij je elektronska pošta, ki ne zagotavlja le individualnega komuniciranja virtualnega poslovodje s porabniki, ampak kot način masovnega obveščanja povzema dogodke v e-prodajalni. Na naslove naročnikov e-novic se najmanj enkrat mesečno razpošle oblikovana e-novica, ki celovito povzema večino aktualnih vsebin v e-prodajalni: akcije izdelkov, nagradne igre, informacije o zaposlitvi, reportaže o Merkurjevih dogodkih in druge korporacijske novice.

SLIKA 7: MERKURJEVA E-NOVICA

2.3 E-oglaševanje

SLIKA 8: MERKURJEVI PASICI

Opombe: Klasične interaktivne Merkurjeve pasice so velikosti 468x60 pikslov; nanjo se lahko obiskovalec zapelje z miško, nakar se mu pasica razširi na dimnejšo 468x180 ali 468x270 pikslov, zato si porabnik lahko prebere osnovne podatke že pred klikom na spletno stran. V primeru božično-novoletne akcije je bila vgrajena v pasici mini igrica. Obiskovalci so v pasici z dimnikom lovili darila in zbirali točke, ko pa so kliknili na pasico, so prišli na stran akcijskih izdelkov in pravo igrico, kjer so lahko tekmovali za prava darila.

Vir: http://nakup.merkur.si/bannerji/.

V primeru spomladanske oglaševalske akcije, ki je potekala v maju 2005 na približno 140 različnih spletnih mestih, je oglaševalska mreža distribuirala 9.700.000 prikazov Merkurjevih pasic, ki so dosegle 475.000 uporabnikov (meritev po standardih IAB). Vsak porabnik je v povprečju videl 20 prikazov pasice, en prikaz pa je trajal povprečno 30 sekund. Kot smo že omenili, je akcijo opazilo 15 odstotkov respondentov, ki so predstavljali gospodinjstva v Sloveniji (Cetin 2005).

Oglaševanje s pasicami v primeru Merkurja pomeni največkrat podporo prodajnih akcij e-prodajalne in je načeloma le komunikacijska podpora tradicionalnih pospeševalnih akcij, ki so tudi edini vir osveževanja ponudbe e-prodajalne. Takšna podpora akcij na internetu pomeni operativne cilje e-prodajalne z usmeritvijo, da je potrebno predstaviti aktualno ponudbo čim večjemu številu porabnikov. Operativno se to izvaja s t.i. krogom aktivnosti:

2.4 Poslovanje e-prodajalne

7 Do oktobra leta 2005 je zrasla povprečna letna vrednost nakupov na okoli 60.000 SIT, op.p.
SLIKA 9: "POSLOVNI" MODEL MERKURJEVE E-PRODAJALNE

<table>
<thead>
<tr>
<th>PONUDBA BLAGA</th>
<th>široka</th>
<th>OMEJENA - 3000 IZDELKOV (AKTUALNI, TODA SAMO 1,5 % PONUDBE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESTAVITEV IZDELKOV IN SVETOVANJE</td>
<td>PODROBEN OPIS IZDELKA</td>
<td>TELEFONSKA POMOČ PRODAJALCA</td>
</tr>
<tr>
<td>CENA</td>
<td>bolj ugodna kot v klasični trgovini</td>
<td>ENAKA KOT V KLASIČNI TRGOVINI</td>
</tr>
<tr>
<td>NAČINI PLAČILA</td>
<td>PO POVZETJU</td>
<td>KREDITNE KARTICE</td>
</tr>
<tr>
<td>DOSTAVA</td>
<td>OSEBNI DVIG (V LJ)</td>
<td>decentralizirana dostava</td>
</tr>
<tr>
<td>HITrost DOSTAVE</td>
<td>NASLEDNJI DAN - NEDOLOČENO</td>
<td>naslednji dan, določen čas</td>
</tr>
<tr>
<td>POSPEŠEVANJE PRODAJE</td>
<td>PRILOŽNOSTNE POLICE, NAVZKRIČNA IN DODATNA PRODAJA</td>
<td>E-POŠTO POŠILJANJE</td>
</tr>
<tr>
<td>KOMUNICIRanje DRUGO</td>
<td>TRŽNA ZNAMKA</td>
<td>OBEZNI ELEMENTI IN POMOC PRI NAKUPU</td>
</tr>
</tbody>
</table>

Opombe: Siva polja pomenijo, da je element vgrajen v e-prodajalni.

SLIKA 10: POSLOVNI PROCES MERKURJEVE E-PRODAJALNE

Opombe: Slika prikazuje poslovni proces povezan z e-prodajalno. Spletne trgovine uporabljajo načeloma eno skladnišče (v Ljubljani). Svojim kupcem zagotavlja dostavo v dveh delovnih dneh in sicer brezplačno za nakup v vrednosti nad 10.000 SIT. Za manjša naročila zaračuna stroške dostave v višini 500 SIT. Dostavo opravlja pošta, v primeru blaga večjih dimenzij pa uporabijo lasten (Merkurjev) prevoz. Kupec lahko naročene izdelke plača po povzetju (stroške poštno nakaznice plača Merkur) ali s plačilno-kreditno kartico.
Vir: Marc 2003, 92.
Ker raziskava ECR 2002 predpostavlja visoko pomembnost logističnega modela v e-poslovanju, lahko tudi simuliramo, kako bi se uvrstila e-prodajalna kot "poslovni model". V prilagojenem modelu klasifikacije e-prodajaln jo lahko uvrstimo glede na njen marketinški splet (navzkrižno, dodatno pospeševanje izdelkov, oglaševanje, obveščanje po e-pošti in drugimi elementi konkurenčne prednosti) in dobimo model e-prodajalne, ki je "prijetna prodajalna z normalno dostavo" (Slika 10, Cvikl 2003, 7).

3 RAZISKAVA VPLIVA E-PRODAJALNE NA VEDENJE PORABNIKOV

3.1 Opredelitev področja in opis problema

Merkurjeva e-prodajalna beleži okoli 60.000 do 70.000 obiskov, kar pomeni približno 25.000 do 30.000 obiskovalcev na mesec.

SLIKA 11: OBISK MERKURJEVE E-PRODAJALNE

Vir: Dnevnik spletnega strežnika.

Takšen obisk je po številu porabnikov primerljiv z obiskom večjega Merkurjevega trgovskega centra, vendar ima e-prodajalna le okrog 100 do 200 nakupov na mesec, kar predstavlja vrednostno okoli 0,7 odstotkov prometa večjega Merkurjevega trgovskega centra. Zato se nam je postavilo vprašanje: "Zakaj tolikšna razlika med obiski in nakupi v Merkurjevi e-prodajalni in kakšen vpliv ima, če ga sploh ima, Merkurjeva e-prodajalna na vedenje porabnikov?"

3.2 Namen, cilj in hipoteze

3.2.1 Namen

Ker e-prodajalna ne vpliva na neposredno prodajo po internetu, je bil osnovni namen raziskave odgovoriti na vprašanje: "Kako vpliva okolje Merkurjeve e-prodajalne na porabnike pri nakupovanju po internetu?"

3.2.2 Cilj

Osnovni cilj empirične raziskave je bil ugotoviti, kako je vplivalo okolje Merkurjeve e-prodajalne oz. Merkurjevo e-komuniciranje na porabnike, konkretno na nakupe v Merkurju.
3.2.3 Hipoteze

H1: Pogosteje ko so Merkurjevi kupci\footnote{8} uporabljali internet, pogosteje so obiskali e-prodajalno pred nakupom v Merkurju.

Sekoli smo torej o verjetnosti, da bolj izkušeni uporabniki interneta pri nakupovanju izdelkov v Merkurju pogosteje uporabljajo e-prodajalno, ne glede na to, ali se potem odločijo za nakup izdelka v e-prodajalni ali v klasičnem trgovskem centru.

Odločitev o tem, ali je porabnik naročil izdelek po internetu ali kupil v klasični prodajalni, pa je bila verjetno odvisna predvsem od njegovih osebnih lastnosti. Na primer, vplivna dejavnika prepričanj o e-nakupovanju so izkušnje na internetu in frekvence nakupov v kanalih neposrednega marketinga (Crisp et al. 1997, 2). Kot zelo pomembna se je pokazala tudi področna inovativnost e-nakupovalcev, ki je posrednik v odnosu med uporabo interneta in adopcijo e-nakupovanja (Citrin et al. 2000, 298). Zato se zdi, da vpliva rutiniranost porabnika v e-nakupovanju na pogostost naročanja izdelkov po internetu.\footnote{9}

\footnote{8} S pojmom kupci smo mislili na porabnike, ki so opravili vsaj en nakup v Merkurju v opazovanem obdobju. Kupca identificira številka Merkurjeve kartice zaupanja, kjer so zabeleženi njegovi nakupi.

\footnote{9} Ni namreč logično, da izkušen e-kupec pogosto naroča izdelke virtualno, pri Merkurju pa se odloča za nakupe v trgovskih centrih namesto za e-prodajalno, če je ponudba na internetu enaka ugodna. Seveda pa je odvisna izbira kanala predvsem od ponudbe, toda to smo preverjali v hipotezah, ki sledijo.
H2: Kupci, ki so bolj izkušeni v e-nakupovanju, so se pogosteje odločili za nakup v e-prodajalni.

Statistika obiskov e-prodajalne je pokazala, da se je obisk e-prodajalne najbolj povečal v času, ko so se razpošiljale Merkurjeve e-novice in v času oglaševalske kampanje s pasicami.

Slika 12: Primer vpliva poslane e-novice na obisk e-prodajalne

Opombe: 3. maja 2005 so na naslove naročnikov poslali Merkurjevo e-novico, ki je opazno povečala obisk e-prodajalne, podobni viški pa se dogajajo ob vsakem pošiljanju. V tem primeru je bila razlika še bolj vidna zaradi predhodnih praznikov.

Vir: Dnevnik spletnega strežnika http://nakup.merkur.si.

Če so promocijska orodja stimulirala obisk e-prodajalne, potem so verjetno vplivala tudi na prodajo izdelkov. E-nakupovalci so namreč močni iskalci koristi (po Donthu and Garcia 1999, 52-58), raje tudi obiskujejo strani, od katerih prejmejo "atracitivno promocijo" in tam tudi nakupujejo. Merkur je tudi zelo agresiven in opazen spletni oglaševalec na slovenskem internetu (Iprom 2004).

H3: Kupci so več kupili v Merkurju, če so pred nakupom pogosteje klikali na e-pasice, na vsebino e-pošte in po drugih poteh obiskali e-prodajalno.

V hipotezi H3 smo nadomestili izpostavljenost promocijskim akcijam oz. opaznost akcij s prihodi iz promocijskih elementov (pasica ali e-pošta), saj smo menili, da če porabnik klikne nanje, je to hkrati dokaz povečane pozornosti, saj je s klikom izrazil interes in je vpleten v e-nakupovanje. Podobno velja, če obišče porabnik e-prodajalno neposredno in neodvisno od e-pošte in e-glasov.

Vsekakor je primerna tudi domneva, da e-okolje ne vpliva le na pogostost nakupov na splošno, ampak stimulira porabnike tudi k spreminjanju nakupovalnih navad, saj so porabniki obiskovali e-prodajalno, ki je namenjena (po definiciji) spletnim nakupom. Nakupno vedenje se lahko namreč zaradi vpliva prodajnega okolja tudi spreminja, saj mnogi porabniki izberejo izdelke šele med policami (Dahlen 2001, 91-102). Domnevali
smo, da močneje ko je porabnike stimuliralo Merkurjevo e-komuniciranje, pogosteje so opravili nakupe v e-prodajalni.

H4: Porabniki so opravili več nakupov v e-prodajalni, če so pogosteje obiskali prodajalno preko pasic, e-pošte ali drugih vиров.

H5: Porabniki, ki so bili bolj zadovoljni s ponudbo in predstavitvijo izdelkov, so pogosteje kupovali v e-prodajalni.

H6: Porabniki, ki so bili bolj zadovoljni z dostavo, cenami in plačilnimi pogoji, so pogosteje kupili v e-prodajalni.

Med pomembnimi dejavniki spletnega nakupovanja, ki smo jih zasedli v literaturi, je bila tudi uporabniška izkušnja, kamor nedvomno spada oblikovna zadovoljivost tehnološkega
vmesnika in enostaven proces izvedbe e-nakupa, čemur bi sicer moralo biti v primeru Merkurjeve e-prodajalne zadoščeno, vendar je potrebno upoštevati, da so pričakovanja porabnikov vedno višja.

Elementi navigacije in iskanja so tudi ozko povezani s ponudbo izdelkov, saj je v primeru, da določenega izdelka ni mogoče najti, neuspešnost lahko posledica slabe navigacije, lahko pa izdelka resnično ni v ponudbi. Neustreznost iskalnih funkcij in oblikovnih elementov je povezana z večjimi stroški iskanja, ki jih reducira dober design, mogoč pa je še pojav opurtovitojih stroškov izbire: prebogata ponudba povečuje iskalni čas, manjša ponudba pa zmanjša iskalni čas, toda povečja verjetnost manjkajočih izbir (Talaga in Tucci 2001). Večina nakupnih odločitev se naredi med policiami prodajalne, zato so porabniki pod močnim vplivom izgleda prodajalne in povezanih promocijskih aktivnosti, med pomembnejšimi dejavniki e-prodajaln pa sta tudi enostavnost brskanja po izdelkih in zadovoljstvo z njimi (Freed 2004, 5). Prenapolnjene strani (t.i. "mega-strani") lahko hitro zmedejo uporabnika zaradi nepreglednega števila izdelkov in količine informacij. Ker spletne design skupaj z iskalnimi funkcionalnostmi pogojuje tudi zaznavne stroške nakupovanja, smo trdili, da vpliva tudi na končni rezultat e-nakupovanja.

H7: Porabniki, ki so se bolj strinjali, da je e-prodajalna pregledna, brskanje po njej enostavno in da je mogoče iskane izdelke hitro najti, so pogosteje kupili v e-prodajalni.

H8: Na pogostost nakupov v e-prodajalni so vplivali: internetne lastnosti porabnika, privlačnost ponudbe, ustreznost spletnega vmesnika in komunikacija z e-okoljem.

10 Merkurjeva spletne trgovina je v preglednosti, designu in všečnosti nakupovanja med boljšimi v Sloveniji (Dvoržak et al. 2001, 18), zato bi lahko upravičeno sklepali, da na manjše število e-nakupov vplivajo drugi elementi e-prodajalne.
SLIKA 2: POTRJEVANJE TEORETIČNIH IZHODIŠČ

Opombe: V spremenljivko internetne lastnosti porabnika bomo združili pogostost uporabe interneta in izkušenost v e-nakupovanju (Li), spremenljivka privlačnost ponudbe (Zp) združuje zadovoljstva z "osnovnimi“ elementi marketinškega spleta (ponudba in predstavitev izdelkov, dostava, cena in plačilni pogoji), spremenljivka zadovoljstvo z vmesnikom oz. ustreznost iskalnih in navigacijskih elementov e-prodajalne (Zep) združuje strinjanja z zaznano preglednostjo in enostavnostjo brskanja ter hitrostjo iskanja, spremenljivka komunikacija z e-okoljem (Oep) pa bo pomenila interakcijo z Merkurjevim e-okoljem (kliki na pasice, e-pošto in neposredni obiski e-prodajalne).

3.3 Predpostavke in omejitve

Pri identificiranju dejavnikov, ki so vplivali na nakupovanje po internetu in ugotavljanju vpliva e-komunikacijskih sredstev, smo preučevali le Merkurjeve kupce oz. imetnike Merkurjeve kartice zaupanja (v nadaljevanju imetnike Mkz). Imetnike Mkz smo namreč lažje identificirali in ugotovili dejanske razlike med nakupi po internetu in v trgovskih centrih. Tako smo izolirali tudi druge nakupe pri konkurenci. Odgovor na vprašanje, kako okolje e-prodajalne vpliva na nakupno odločitve oz. na število in vrednost nakupov, je pomenil tudi rešitev problema nesorazmerja med obiski in nakupi po internetu. Zato smo upoštevali osnovni predpostavki, da je komunikacija porabnika z e-okoljem (Zp, Zep in Oep) vplivala na njihovo vedenje in da se je rezultat vedenja odražal v izbiri nakupovalnega kanala glede na osebne (internetne) lastnosti porabnikov.

V empirični raziskavi smo se omejili le na internetne porabnike, ki so bili naročniki Merkurjevih e-novic in hkrati imetniki Mkz. Prvotno smo želeli porabnike raziskati v letu 2004 oz. v obdobju 12 mesecev, vendar so bili nekateri podatki zaradi tehnoloških omejitev za nekaj mesecev nedostopni. Zato smo opravili statistično analizo porabnikov v

Naslednja omejitev se je pokazala pri identifikaciji porabnikov, saj ob nakupih predložijo kupci na blagajni Mkz le v približno 70 odstotkih nakupov (Moškotelec 2005). Druga omejitev identifikacije in sledenja porabnikov so predstavljali piškotki (ang. coockie), saj jih 10 odstotkov uporabnikov interneta preprečuje (v avgustu 11,7 odstotka, po Iprom 2005c). Več uporabnikov lahko uporabljata tudi en računalnik (primer so dostopi iz knjižnic, šol) ali pa en uporabnik več računalnikov, zato so imeli v tem primeru več piškotkov.

V raziskavi zaradi obsega naloge nismo razlikovali med nakupi različnih vrst tehničnega blaga (zabavna elektronika, gospodinjski aparati, gradbeni material), saj je primernost interneta kot orodja marketinga odvisna predvsem od tipov izdelkov in njihovih lastnosti (Peterson et al. 1997). Pri ugotovljeni interakciji porabnika z e-okoljem smo predpostavljali globoko vpletenost, kar pomeni neposredni in aktivni kontakt s spletnim okoljem (kliki, obiski), ne pa tudi pasivno izpostavljenost mediju (prikaz pasic, količino prejete in prebrane e-pošte brez klikov na vsebino).

Kljub številnim oviram in omejitvam smo želeli zasnovati meritveni model, ki je podal odgovore na osnovna vprašanja, s katerimi bomo v prihodnje lažje in temeljiteje pojasnjevali odnose med porabniki in trgovci na internetu.

3.4 Metodologija

11 Tradicionalna literatura adopcije in difuzije inovacij podaja razumevanje e-nakupovanja s pomočjo pogleda v notranje vzroke porabnika, posebno pa poudarja namere e-nakupovanja.
trditev naredili seznam vseh potrebnih spremenljivk oz. merskih skal v tabelarični obliki (po hipotezah) in se hkrati odločili, kateri vir za oceno spremenljivke je tudi najbolj uporaben v našem primeru. Tabela 14 (Priloga 2) je bila izhodišče priprave meritvenih skal, podatkovnega modela in zajema podatkov. Nato smo pridobili podatke, jih analizirali in interpretirali rezultate.

3.4.1 Razvaj spremenljivk in pridobivanje podatkov

Pred analizo podatkov smo najprej določili in popisali spremenljivke, nato pa zasnovali ustrezno podatkovno skladišče, ki smo ga napolnili s podatki iz različnih virov. Pri opisovanju in določanju spremenljivk smo naleteli na nekaj dilem, ki smo jih morali pragmatično rešiti. Iz popisanih spremenljivk (Priloga 2 in 3) lahko bralec opazi, da temelji ideja pridobivanja podatkov na združevanju podatkov iz različnih virov s pomočjo analiziranja sledi, ki jih porabniki puščajo v različnih okoljih:

- **dnevnik spletnega strežnika** vsebuje t.i. elektronske sledi, ki so jih obiskovalci oz. Merkurjevi kupci pustili v e-prodajalni. Podatki se najlaže pridobijo s pomočjo piškotka (ang. cookie) računalnika, s katerim nakupuje porabnik, ki je po navadi zaveden tudi v dnevniku spletnega strežnika,
- **baza imetnikov Merkurjeve kartice zaupanja (Mkz)**, kjer so (predvsem klasični) nakupi zavedeni po številki kartice, seveda le, če jo ob nakupu imetnik tudi pokaže,
- **anketa**; ko je porabnik odgovoril na vprašanja ankete, je vpisal tudi številko Mkz in piškotek brskalnika; ker pa je na anketni prišel preko e-pošte, pa smo lahko prebrali tudi njegov e-naslov.

SLIKA 13: POVEZLJIVOST VIROV PODATKOV

Oponbe: Ker smo v anketi pridobili številko imetnika Mkz, smo jo lahko združili z bazo imetnikov Mkz. V anketi smo pridobili tudi piškotek porabnika, zato smo lahko podatke združili s sledmi strežnika spletnega dnevnika e-prodajalne. Te sledi (npr. nakupi v e-prodajalni) so bile preko piškotka in številke Mkz primerljive tudi s podatki baze Mkz (nakupi v klasičnih trgovaških centrih).

Ker smo imeli tri vire podatkov, je bilo pomembno, da sta bila vsaj dva pari virov med seboj povezljiva, kar je omogočilo medsebojno povezljivost vseh treh virov po dveh skupnih identih. V našem primeru sta bila skupna identa piškotek in številka Mkz primerljive tudi s podatki baze Mkz (nakupi v klasičnih trgovaških centrih).

12 Primer dileme:“Kaj pomeni obisk e-prodajalne pred nakupom v Merkurju oziroma kakšno časovno obdobje pred nakupom moramo upoštevati?” Dileme in omejitve spremenljivk so opisane v Prilogi 4.
številko Mkz. To je nadalje omogočilo povezljivost podatkov in izkoriščanje oz. rudarjenje (ang. data mining) po sekundarnih podatkovnih virih:

1. najprej smo oblikovali spletno anketo in jo poslali respondentom po e-pošti (vsem naročnikom Merkurjevih e-novic). V odgovorih so nekateri respondenti vpisali tudi svojo številko Mkz, mi pa smo jih označili še s piškotkom. Ta dva podatka sta za nas pomenila enolično identifikacijo respondenta (ID respondenta = številka Mkz + piškotek). Vse odgovore in zaznamke respondentov smo seveda prenesli v podatkovno skladišče;

2. ker so pred anketo nekateri anketiranci pustili svoje sledi v e-prodajalni (sledi se zapišejo v dnevniku spletnega strežnika, kar je drugi vir podatkov), smo analizirali dnevnik in na podlagi piškotkov poiskali obiske naših respondentov. Podatke o obiskih in e-nakupih smo prepisali v podatkovno skladišče;

3. nekateri kupci pa so ob klasičnih nakupih v Merkurju pokazali svojo kartico, kar se je zabeležilo v bazi imetnikov Mkz (tretji vir podatkov). Glede na številko kartice, vpisano v anketi, smo iz baze Mkz prepisali informacije o nakupih in demografiji in podatke prenesli v podatkovno skladišče raziskave.13

Ker je bila raziskava tudi odlična priložnost, da smo analizirali in primerjali Merkurjeve respondente po demografskih lastnostih z drugimi skupinami porabnikov (npr. povprečne e-nakupovalce v Sloveniji po RIS, povprečni imetnik Mkz), smo pregledali še dodatne demografske lastnosti. Podlaga za dodatne spremenljivke je bila raziskava RIS2004/I (spol, izobrazba, starost, zaposlenost in regija po poštni številki). Tako urejeni podatki so bili primerni za izvoz v statistični program (SPSS), kjer smo opravili analizo. Hipoteze smo potrjevali s korelacijskimi koeficienti, za sprejem hipoteze pa smo dopustili stopnjo tveganja, ki ni bila večja od 0,05, kar smo označevali z znakom α oz. α ≤ 0,05 (Košmelj in Rovan 1997, 80).

Anketa

13 Podrobnejše informacije o spremenljivkah, oblikovanju podatkovnega skladišča in omejitvah merjenja so v Prilogi 3, 4 in 5.
14 Testiranje z vsakim tržnim raziskovalcem posamezno, v dveh krogih (Mojca Okršlar, Boris Moškotelec in Dušan Krošl).
ki so odgovorili na vprašanja in so vpisali številko kartice ter prejeli piškotek, pa so predstavljali vzorec populacije. Ustrezne podatkovne zapise so torej predstavljali vsi odgovori respondentov z vpisano številko M kw in neblokiranim piškotkom.

Dnevnik spletnega strežnika

Ko smo prenehali z zbiranjem odgovorov na spletno anketno, smo naredili izpis piškotkov in z njihovo pomočjo naredili izpis prihodov respondentov v e-prodajalno iz dnevnika spletnega strežnika (e-novice, pasice in ostalo) ter prešteli in zapisali skupno število prihodov za trimesečje in število e-nakupov za tri in dvanajst mesecev (Priloga 7).

Baza imetnikov Merkurjeve kartice zaupanja

15 Zaradi tehniških omejitev smo lahko izvedli izpis prihodov le za trimesečje: od 15. marca do 15. junija 2005, zato smo opazovanje obiskov izvedli na trimesečju, kljub temu pa so bili na voljo tudi nekateri podatki za 12 mesecev (število e-nakupov), ki smo jih prav tako upoštevali zaradi primerjave med vprašanjji ankete in raziskavo RIS.
3.4.2 Analiza rezultatov

Po pregledu pridobljenih odgovorov na anketni vprašalnik smo ugotovili, da pri slab polovici anketirancev ni bila vpisana številka Mkz, zato se je postavilo dodatno vprašanje, kako se skupini respondentov (imetniki in respondenti brez Mkz) razlikujejo, saj tvori vsaka skupina polovico naročnikov Merkurjevih e-novic ob predpostavki, da so vsi enako odzivni na anketno. Zato smo znotraj analize rezultatov najprej preverili hipoteze, v nadaljevanju pa primerjali vzorca po demografskih dejavnikih. Tej primerjavi smo dodali še vzorec povprečnega imetnika Mkz in vzorec respondentov RIS, saj nas je tudi zanimalo, kako se vzorca "e-novičarjev" razlikujeta od povprečnega imetnika Mkz in ali so vzorci primerljivi tudi z e-nakupovalci v Sloveniji oz. z rezultati raziskave RIS.

Preverjanje hipotez

S prvo hipotezo smo želeli potrditi, ali so bolj izkušeni uporabniki interneta pri nakupovanju izdelkov v Merkurju tudi pogosteje prihajali v e-prodajalno pred nakupom (ne glede na kasnejši nakup po internetu ali v klasični prodajalni).16

H1: Pogosteje ko so Merkurjevi kupci uporabljali internet (\(Ui\)), pogosteje so tudi obiskali e-prodajalno pred nakupom v Merkurju (Onm).17

Izračunani Spearmanov koeficient korelacije ranga, med Ui in Onm, ro=0,005 pri enostranski neznačilni stopnji (\(\alpha=0,451\), kar kaže na nepovezanost oz. neznačilno korelacijo med pogostostjo uporabe interneta (\(Ui\)) in prihodi v e-prodajalno pred nakupom

16 Izračune potrjevanja hipotez in izris grafikonov smo izvajali v programu SPSS 12.0. Podrobnejši prikaz spremenljivk posamezne hipoteze in uporabljenih formular statističnih koeficientov pa se nahaja v prilogi posamezne hipoteze. Pri potrjevanju hipotez smo upoštevali enostransko stopnjo značilnosti! Formule koeficientov se nahajajo v Prilogi 18.

17 Podrobnejši prikaz spremenljivk hipoteze H1 se nahaja v Prilogi 8.
v Merkurju (Onm). Zato smo izračunali tudi koeficient eta, ki pa tudi ne pokaže značilne povezanosti (eta=0,046, α=0,689). Zato smo **hipotezo H1 zavrgli**, saj nikakor ne moremo trditi, da je bila intenzivnejša prisotnost na internetu povezana s pogostejšimi obiski e-prodajalne (v 14 dneh) pred nakupom v Merkurju. Če bi ta trditev veljala na splošno za druge e-prodajalne in multikanalne trgovce, bi lahko zavrnili namige, da porabniki, ki so pogosteje na internetu, tudi intenzivneje uporabljajo e-prodajalno za informiranje pred nakupovanjem, kar se lahko zdi na prvi pogled samoumevno, torej, da porabniki, ki so na internetu bolj prisotni, tudi pogosteje e-nakupujejo. Naša ugotovitev se sklada s trdvitvami o področni inovativnosti, saj intenzivnejša prisotnost v e-kanalu še ne pomeni tudi spremenjenega načina vedenja pri nakupovanju.

SLIKA 14: PORAZDELJENOST OBISKA E-PRODAJALNE GLEDE NA UPORABO INTERNETA

H2: Kupci, ki so bolj izkušeni v e-nakupovanju (Le), so se pogosteje odločili za nakup v e-prodajalni (Nep).18

Preveriti smo morali značilnost povezave med izkušenostjo v e-nakupovanju na splošno (Le) in številom nakupov v Merkurjevi e-prodajalni (Nep). Podatke o izkušenosti v e-nakupovanju smo pridobili z anketo in je ocena responenda o številu vseh e-nakupov, ki jih je opravil v 12 mesecih po internetu (le; 0, 1, 2, 3 in 4 in več nakupov). Podatke o številu nakupov v e-prodajalni (Nep) imamo zabeležene v dnevniku spletnega strežnika (Nep-s za 12 mesecev glede na naslov e-pošte in imetnika Mkz); kljub temu pa smo podatke spremenljivke Nep pridobili še z anketo v tretjem vprašanju (Nep-a; 0, 1, 2, 3 in 4 in več nakupov), kar pomeni, da smo lahko primerjali usklajenost obeh virov (lastne ocene nakupov in izpis strežnika). Zato smo najprej izvedli t-test aritmetičnih sredin za dva odvisna vzorca. Takšen test ugotavljamo, ali je aritmetični sredini dveh odvisnih vzorcev razlikujeta (po Cramer 1998, 205), test pa lahko označimo kot razliko med dvema aritmetičnima sredinama dveh vzorcev (\(\bar{\text{Nep-a}}, \bar{\text{Nep-s}} \)), deljeno s standardno napako razlike med aritmetičnima sredinama (S.E.). Podatke iz strežnika oz. spremenljivko Nep-s smo najprej razvrstili v pet enakih razredov, kot so ocene iz ankete oz. Nep-a (0, 1, 2, 3 in 4 in več nakupov). Kljub razvrščanju v razrede sta ostali srednja vrednost in varianca po spremenljivkah Nep-s in Nep-s enaki. Izračunan t-testa med aritmetičnima sredinama podatkov za Nep, pridobljenimi iz ankete (Nep-a, \(\bar{\text{Nep-a}} =0,340 \)) in iz dnevnika spletnega

18 Podrobnejši prikaz spremenljivk hipoteze H2 se nahajajo v Prilogi 9.
strežnika (Nep-s, $\bar{r} = 0.134$), je pokazal, da sta vzorca podatkov značilno različna ($t = 8.585$, pri stopnji prostosti $df = 1030$ in dvostransko ravnilo zaupanja $\alpha = 0.000$). Ker ordinalni spremenljivki Nep-a in Nep-s nista normalno porazdeljeni, smo testirali različčnost vzorca tudi z nепarametričnim testom znakov za dva odvisna vzorca (Cramer 1998, 342-343). Izračun dokazuje, da so lastne ocene respondentov o številu nakupov v 12 mesecih v Merkurjevi e-prodajalni značilno višje, kot kažejo zabeleženi nakupi respondentov iz dnevnika spletnega strežnika ($z = -8.782$, dvostransko $\alpha = 0.000$). Izpis števila nakupov iz dnevnika spletnega strežnika bi moral biti zanesljiv, saj smo od respondenta v anketi zabeležili naslov e-pošte in številko Mkz ter po obeh kontrolnih podatkih naredili letni izpis nakupov. Še večjo razliko med srednjima vrednostnima nizov podatkov dobimo, če primerjamo ocenjene vrednosti nakupov iz ankete, opravljenih v Merkurjevi e-prodajalni (Vep-a, 4. vprašanje ankete) in vrednosti, izpisane iz dnevnika spletnega strežnika za 12 mesecev (Vep-s, vrednosti smo porazdelili v enakih 5 razredov, kot je Vep-a). Tudi ta izračun dokazuje, da so ocene respondentov o njihovi skupni vrednosti nakupov v 12 mesecih v Merkurjevi e-prodajalni iz ankete (Vep-a, $\bar{V} = 0.602$) značilno višje, kot to dokazuje aritmetična sredina (Vep-s, $\bar{V} = 0.270$) izpisa nakupov iz Merkurjeve e-prodajalne ($t = 10.213$, $df = 1030$, dvostransko $\alpha = 0.000$). Z test odvisnih vzorcev ($z = -10.588$, dvostransko $\alpha = 0.000$) kaže pravzaprav na enak sklep, to je različčnost vrednosti spremenljivk glede na izvor! Ker smo menili, da so podatki za Nep in Vep bolj natančni po izpisu strežnika H2 uporabili podatke iz strežnika (Nep-s in Vep-s), ki pa jih dodatno nismo razvrščali v frekvenčne razrede, saj ni potrebe za dodatno izgubo kvalitete podatkov o spremenljivki Nep-s in Vep-s (Govednik 2005).

Ob preverjanju lastnosti in porazdelitve spremenljivk hipoteze H2 na grafikonu (Ie in Nep-s, Slika 14) smo ugotovili, da sta za testiranje hipoteze primerna tako Spearmanov korelacijski koeficient (σ) kakor eta (η). SLIKA 15: PORAZDELITEV NAKUPOV V E-PRODAJALNI GLEDE NA IZKUŠENOST

Opombe: Grafikona prikazujeta porazdelitev števila opravljenih nakupov v 12 mesecih v Merkurjevi e-prodajalni (Nep-s) glede na pogostost e-nakupovanja respondentov (Ie) in porazdelitev vrednosti opravljenih e-nakupov v 12 mesecih v Merkurju (Vep-s) glede na vrednosti e-nakupov po internetu (Ve). Statistične vrednosti spremenljivk so prikazane v Prilogi 9.

Lastnosti in porazdelitev podatkov spremenljivk hipoteze H2 kažejo, da sta za testiranje hipoteze H2 primerna tako Spearmanov korelacijski koeficient σ, kakor eta η. Korelacija med števili nakupov v 12 mesecih po internetu (Ie) in nakupi v e-prodajalni v
12 mesecih (Nep-s) se je pokazala kot šibka, vendar značilna (ro=0,254, α=0,000), podobno prikazuje tudi izračun koeficienta eta (eta=0,264, α=0,000). Izračun potrjuje hipotezo H2 z značilno šibko pozitivno korelacijo, kar pomeni, da so bolj izkušeni respondenti v e-nakupovanju pogosteje naročali izdelke v Merkurjevi e-prodajalni. Pogostost nakupovanja po internetu očitno vpliva na nakupovanje pri Merkurju, vsekakor pa moramo pri interpretaciji upoštevati tudi naravo pogostosti nakupovanja posameznih kategorij tehničnega blaga (npr. hladilniki, televizorji itd.) in omejen nabor izdelkov e-prodajalne v primerjavi s ponudbo klasičnih trgovskih centrov.

Zaradi poglobljene analize smo primerjali tudi ocenjeno vrednost vseh e-nakupov v 12 mesecih po internetu (Ve) in izpisanu vrednost vseh nakupov respondenta v e-prodajalni (Vep-s - "teža" e-porabnika). Ugotovili smo, da je lastna ocena vrednosti nakupov po internetu (Ve) značilno povezana z vrednostjo nakupov v e-prodajalni (Vep-s). Povezava je sicer šibka, pa vendar močnejša kot pri številu nakupov (ro= 0,311, α =0,000; eta=0,338, α=0,000).

Postavilo se je tudi vprašanje, ali niso morda izkušenije oz. pogostešji e-nakupovalci tudi pogostešji Merkurjevi kupci (npr. zaradi dohodka) in morebiti sploh ne obstaja vzročna povezava med pogostostjo e-nakupovanja na splošno in e-nakupovanjem v e-prodajalni, ampak le statistična, kot posledica pogostešjeega nakupovanja v Merkurju? Spearmanov korelacijski koeficient med izkušenostjo v e-nakupovanju po internetu (Ie) in skupnim številom nakupov v Merkurju v 12 mesecih po bazi Mkz (Nm) ni značilen (ro=0,017, α=0,596), prav tako ni značilna povezava med številom nakupov v Merkurjevi e-prodajalni (Nep-s) in skupnim številom nakupov v Merkurju (Nm) v zadnjih 12 mesecih (ro=0,03, α=0,935). Spremenljivki pogostosti nakupovanja po internetu (Ie in Nep-s) nista povezane s pogostostjo nakupov v Merkurjevi e-prodajalni.

H3: Kupci so več kupili v Merkurju (Vm), če so pred nakupom pogosteje klikali na e-pasice, na vsebino e-pošte in po drugih poteh obiskali e-prodajalno (Oep_nm).

Preverjali smo povezanost med številom obiskov e-prodajalne pred nakupom v Merkurju (Oep_nm, v izbranem časovnem obdobju 14 dni) in vrednostjo vseh nakupov v Merkurju (Vm, v opazovanem obdobju od 15. marca do 16. junija 2005). Za izračun sta bila primerna Pearsonov korelacijski koeficient (r), ki meri linearno povezanost med spremenljivkama in regresijski koeficient. Podatke za spremenljivki smo pridobili s poizvedbami v bazi Mkz in dnevniku spletnega strežnika. Po dnevniku spletnega strežnika smo lahko sledili obiskovalcem v e-prodajalni le v trimesecju, kar bo predstavljalo naše spremenljivke: Vm_tri in Oep_nm (Nm_tri itd.). V hipotezi H3 smo opazili več izvorov obiskov e-prodajalne (e-pasice, e-pošta in drugo), kar pomeni več podspremenljivk (Onm_p, Onm_en, Onm_o). V takšnih primerih smo najprej testirali delne korelacije (npr. Vm z Onm_p, Vm z Onm_en in Vm z Onm_o), nato pa na koncu testirali vpliv z regresijsko analizo (sočasen vpliv).

Pri trditvi H3 smo naleteli na dva načina interpretacije, saj smo ob pogledu v podatke izvorov obiskov opazili, da je bila vsota obiskov vseh treh izvorov po respondentu enaka skupnim obiskom e-prodajalne: Onm = Onm_p + Onm_en + Onm_o.

19 Podrobnejši prikaz spremenljivk hipoteze H3 se nahajajo v Prilogi 10.
SLIKA 16: PORAZDELITEV VREDNOSTI NAKUPOV V MERKURJU PO OBISKIH

Opombe: Grafikoni prikazujejo porazdelitev vrednosti opravljenih nakupov v Merkurju v trimesečju (Vnm_tri) glede na vire obiskov e-prodajalne: e-novice, pasice, drugi prihodi in vsi viri skupaj. Obisk e-prodajalne pred nakupom v Merkurju predstavlja seveda povprečen obisk, če je respondent opravil v opazovanem obdobju več nakupov.

Zato smo najprej testirali vrednost nakupov (Vm_tri) z vsemi viri prihodi respondentov v e-prodajalno skupaj, se pravi z Onm:

H3.a: Kupci so več kupili v Merkurju (Vm_tri), če so pred nakupom pogosteje obiskali e-prodajalno (Onm, vsi izvori prihodov skupaj).

Primerjava med vrednostjo nakupov v trimesečju v Merkurju (Vm_tri) in obiski e-prodajalne v 14 dneh pred nakupi (Onm, vsi viri skupaj) je pokazala, da je povezava značilno pozitivna, vendar šibka (r = 0,126, α=0,001), variranje Onm pa pojasnjuje le 1,6% variance Vm_tri (r²=0,016). Ker obstaja šibka značilna korelacija med vrednostjo nakupov v trimesečju v Merkurju (Vm_tri) in obiski e-prodajalne v 14 dneh pred nakupi (Onm), lahko pri 0,1-odstotnem tveganju trdimo, da so respondenti zapravili več denarja v Merkurju, če so pred nakupom obiskali e-prodajalno. S tem smo potrdili hipotezo H3.a.
Preveriti je veljalo tudi odnos med prihodi v e-prodajalno (Onm) in števili nakupov v Merkurju v trimesečju (Nm_tri); izračun kaže, da je povezava med spremenljivkama Nm_tri in Onm značilna, pozitivna in srednje močna (r=0.477, α=0.000). Koeficient determinacije pove, da je pojas njene 22,8% variance (r^2=0.228), standardna napaka ocene Nm_tri pa, da smo se v povprečju zmotili za 3,642 (S.E. oz. s=3,642), če smo na podlagi Onm ocenjevali Nm_tri, kar pomeni, da standardna napaka predstavlja 87% vrednosti aritmetične sredine Nm_tri (4,21). Ocenili smo tudi, ali je regresija, s katero želimo pojasniti Nm_tri, dobro specificirana. Durbin in Watsonov test avtokoreliranosti preostankov pokaže, da je d=2,072, kar pomeni, da avtokorelace skoraj ni oz. je rahlo negativna, zato je regresijska zveza pravilno izbrana in preostanki niso v korelaciji s kakšnimi neidentificiranimi pojavami. Ker obstaja značilna srednje močna korelacija med nakupi v trimesečju v Merkurju (Nm_tri) in obiski e-prodajalne v 14 dneh pred nakupi (Onm), lahko trdimo, da so respondenti tudi večkrat kupili v Merkurju, če so pred nakupom obiskali e-prodajalno e-prodajalno. Očitno so pogostejši obiski e-prodajalne v 14 dneh pred nakupi v Merkurju bolj povezani z večjim številom nakupov v Merkurju (korelacija je srednje močna) kot s skupno vrednostjo kupljenega blaga (korelacija je šibka), zato lahko domnevamo, da vpliva intenzivnejša elektronska komunikacija bolj na število nakupov v Merkurju kot na njihovo skupno vrednost. Veljalo bi raziskati, če intenzivnost e-komuniciranja ne vpliva bolj na impulzivne nakup manjših vrednosti, ki so manj naštevane in jih spodbujajo promocijske akcije.

Naslednja interpretacija trditve H3 pa je bila, da je potrebno ločevati izvore obiskov e-prodajalne med seboj, kar pogojuje preverjanje povezanosti vrednosti nakupovanja (Vnm_tri) z vsakim posameznim izvorom obiska oz. klikanja:

- **H3.b:** Kupci so več kupili v Merkurju (Vm_tri), če so pred nakupom pogostej obiskali e-prodajalno preko e-novic (Onm_en).
- **H3.c:** Kupci so več kupili v Merkurju (Vm_tri), če so pred nakupom pogostej obiskali e-prodajalno preko pasic (Onm_p).
- **H3.č:** Kupci so več kupili v Merkurju (Vm_tri), če so pred nakupom pogostej obiskali e-prodajalno po drugih poteh (Oen_o), kakor tudi preučevanje regresije (Onm ≠ Onm_p + Onm_en + Onm_o):
- **H3.d:** Kupci so več kupili v Merkurju (Vm_tri), če so pred nakupom pogostej obiskali e-prodajalno skozi e-novice, pasice in drugo (Onm_en, Onm_p, Onm_o).

H3.b: Kupci so več kupili v Merkurju (Vm_tri), če so pred nakupom pogostej obiskali e-prodajalno preko e-novic (Onm_en).

Spremenljivki vrednost vseh nakupov v trimesečju v Merkurju (Vm_tri) in število prihodov preko e-novic (Onm_en) sta značilno šibko in pozitivno povezani (r=0,111,

20 Če se vsota kvadratov ocen naključnih členov (ocene e) distribuira vsaj približno normalno, pomeni, da se 68,27% vseh ocenjenih vrednosti Nm_tri ne razlikuje od njenih dejanskih vrednosti za več kot 3,642*s; 95,45% za več kot ±2*s; 99,73% pa za več kot ±3*s (prirejeno po Bajt in Štiblar 2002, 132).

α=0,002), zato smo hipotezo H3.b sprejeli. Pearsonova parcialna korelacija med Vm_tri in Onn_en, ob kontroli Onn_p in Onn_o pa je neznačilna (r_{1234}=0,034, α=0,187). To pomeni, da če kontroliramo spremenljivki: obisk preko pasic (Onn_p) in obisk preko drugih virov prihodov (Onn_o) v 14 dneh pred nakupom v Merkurju, postane korelacija med vrednostjo vseh nakupov v trimesečju v Merkurju (Vm_tri) in številm prihodov preko e-novic (Onn_en) neznačilna. Izračun kaže, da delujeta izvora obiskov e-prodajalne Onn_p in Onn_o kot pospeševalca korelacije med Vm_tri in Onn_en!

Povezava med števili nakupov v trimesečju (Nm_tri) in obiski e-prodajalne pred nakupi preko e-novic (Onn_en) je srednje močno in dokazuje, da obiski iz e-novic pred nakupi v Merkurju bolj pospešujejo število nakupov kot njihovo vrednost (r=0,464, α=0,000). Pearsonova parcialna korelacija med Nm_tri in Onn_en, ob kontroli Onn_p in Onn_o postane iz značilno srednje močne, značilno šibka (r_{1234}=0,308, α=0,000), kar pomeni, da tudi tukaj delujeta druga dva izvora obiskov Onn_p in Onn_o kot pospeševalca korelacije med Nm_tri in Oen_nm.

H3.c: Kupci so več kupili v Merkurju (Vm_tri), če so pred nakupom pogosteje obiskali e-prodajalno preko pasic (Onn_p).

Povezava med spremenljivkama Vm_tri in Onn_p ni značilna (r=0,036, α=0,175), zato smo morali hipotezo H3.c zavrnili. Pearsonova parcialna korelacija med Vm_tri in Onn_p, ob kontroli Onn_en in Onn_o, ni značilna (r_{1234}=0,010, α=0,783), kar pomeni, da ne moremo trditi o značilnom vplivu Onn_p in Onn_o na korelacijo med Vm_tri in Onn_p.

Povezava med števili nakupov v trimesečju v Merkurju (Nm_tri) in obiski e-prodajalne pred nakupi preko pasic (Onn_p) kaže na šibko in pozitivno povezanost (r= 0,261, α=0,000). Interakcija s pasicami očitno vpliva na število nakupov v Merkurju, ne vpliva pa na večjo vsoto zapravljenega denarja v tromesečju. Pearsonova parcialna korelacija med Nm_tri in Onn_p, ob kontroli Onn_en in Onn_o je šibkejša (r_{1234}=0,145, α=0,000), kar pomeni, da Oen_nm in Oo_nm vplivata kot pospeševalca korelacije med Nm_tri in Onn_p. Ker oglaševanje s pasicami po internetu vpliva na število nakupov, ne pa na večjo vrednost, bi bilo zanimivo preveriti tudi vpliv izpostavljenosti pasicam v daljšem časovnem obdobju.

H3.č: Kupci so več kupili v Merkurju (Vm_tri), če so pred nakupom pogosteje obiskali e-prodajalno po drugih poteh, kot so e-novice in pasice (Oen_o).

Povezava med vrednostjo vseh nakupov v trimesečju v Merkurju (Vm_tri) in številom prihodov preko ostalih virov je značilno pozitivna in šibka (r=0,238, α=0,000) ter močnejša kot pri prihodih preko e-novic. Zato smo trditev sprejeli. Pearsonova parcialna korelacija med Vm_tri in Onn_o, ob kontroli Onn_en in Onn_p je značilna in rahlo šibkejša (r_{1234}=0,214, α=0,000), kar pomeni, da Onn_en in Onn_o delujeta kot komaj zaznava pospeševalca korelacije med Vm_tri in Onn_o.

Povezava med števili nakupov v trimesečju (Nm_tri) in obiski e-prodajalne pred nakupi po drugih poteh (Onn_o) kaže značilno, pozitivno srednje močno povezavo, med vsemi korelacijami celo najvišjo, saj sega celo proti meji značilne korelacije (r=0,627, α=0,000). Pearsonova parcialna korelacija med Nm_tri in Onn_o, ob kontroli Onn_en in Onn_p postane nekoliko šibkejša, kljub temu pa je še vedno srednje močna (r_{1234}=0,558, α=0,000), kar pomeni, da Oen_nm in Oen_o delujeta kot pospeševalca korelacije med Nm_tri in Onn_o.
Izračuni so potrdili, da so neposredni in drugi prihodi v e-prodajano v 14 dneh pred nakupi v Merkurju najbolj pozitivno povezani z vrednostjo kupljenega blaga, še bolj pa s številom nakupov v Merkurju. Neposredni prihodi in drugi sekundarni viri prihodov, ki neposredno niso stimulirani s strani e-novic in pasic, kažejo očitno močnejše potrebe in večjo vpletost v nakupovanje, saj respondenti med vsemi viri prihodov zapravijo največ denarja v Merkurju in opravijo največ nakupov. Vsekakor bi bilo zanimivo v nadaljevanju tudi preveriti, kako močan vpliv ima situacija porabnika, v kateri se nahaja (gradnja hiše, opremljanje kuhinje itd.), saj se zdi logično, da so neposredni prihodi v e-prodajalno, tudi preko referenčnih, vsebinsko povezanih strani (npr. iskanje želenega blaga po iskalnikih), najmočnejši napovedniki nakupa. Naslednje razmišljanje pa se navezuje na nakupovalne vzorce in napovedovanje nakupa. V našem primeru smo namreč vsakemu nakupu določili sidrišče v časovni točki 14 dni pred nakupom v Merkurju, nato pa v intervalu 14 dni, od sidrišča do izvršitve nakupa, prešeli vse kupčeve obiske e-prodajalne. Zato bi morali dodatno analizirati še vzorce obnašanja v e-prodajalni na splošno (brez sidrišča v nakupih) in ugotoviti razlike ter izvesti podrobnejšo analizo obiskov po izdelkih skupinah. Če se vzorci obiskov razlikovali, bi pomenilo, da bi že ob obisku in identifikaciji nakupovalca lahko napovedali verjetnost nakupa posameznega blaga v Merkurju.

H3.d: Kupci so več kupili v Merkurju (Vm_tri), če so pred nakupom pogostejše obiskali e-prodajalno skozi e-novice, pasice in druge izvore (Onm_en, Onm_p, Onm_o).

Čeprav smo že preračunavali skupne prihode (Onm) moramo preveriti tudi parcialne izvore obiskov (Onm_en, Onm_p, Onm_o) v regresijski povezanosti z Vm_tri. Multiplja regresijska analiza povezava med spremenljivkami Vm_tri in Onm_en, Onm_p in Onm_o kaže, da je multipla korelacija značilno pozitivna (R=0,240; R²=0,058), kvadriran regresijski koeficient pa pove, da linearna kombinacija neodvisnih spremenljivk (Onm_en, Onm_p, Onm_o) pojasnjuje 5,8% variacije odvisne spremenljivke (Vm_tri). 22 To pomeni, da smo lahko hipotezo H3.d sprejeli. Standardizirani in nestandardizirani parcialni koeficienti kažejo, da se pri vnosu Onm_o v regresijo zgodi najvišje absolutno povečanje pojasnjene variance (R²_{Onm_o}=0,057; R²_{Onm_o,Onm_en}=0,058, R²_{Onm_o,Onm_en,Onm_p}=0,058).

Durbin-Watsonov test kaže, da je regresija pravilno izbrana, saj je d=2,01.

| Regresijska analiza števila nakupov v Merkurju (Nm_tri) in obiskov (Onm_en, Onm_p in Onm_o) kaže na značilno močno pozitivno multipljo korelacijo (R=0,689). Kvadriran regresijski koeficient (R²=0,475) kaže 47,5% pojasnjenosti odvisne spremenljivke (Nm_tri) s strani variranja linearne kombinacije neodvisnih spremenljivk (Onm_en, Onm_p, Onm_o). Pregled kvadratov regresijskih koeficientov (R²_{Onm_o}=0,394, R²_{Onm_o,Onm_en}=0,463, R²_{Onm_o,Onm_en,Onm_p}=0,475) pokaže še najvišje povečanje pojasnjene variance pri Onm_o, pri Onm_en se poveča pojasnjena varianca še za 6,9%, ob Onm_p pa le še za 1,2%. |

22 Spremenljivke sem vstavil v preračun po metodi »Enter« po dogovoru, da se v regresijo uvrščajo spremenljivke od najvišjega do najnižjega korelacijskega koeficiente.
Obiski e-prodajalne v 14 dneh pred nakupi v Merkurju so skoraj v vseh primerih značilno pozitivno povezani z vrednostjo nakupov v Merkurju v opazovanem obdobju, še močnejše pa so povezani s števili nakupov. To je tudi dokaz multikanalnega nakupovanja porabnikov in upravičene domneve, da okolje e-prodajalne vpliva na nakupe v Merkurju tako, da so porabniki, ki so pred nakupi pogosteje obiskali e-prodajalno, zapravili večjo vsoto denarja v Merkurju, opravili pa so tudi več nakupov. Pri izračunih smo še ugotovili, da dobimo različna rezultata, če koreliramo vrednost vseh nakupov (Vm_tri) s številom skupnih prihodov (Onm; r = 0,126) ali če izračunamo regresijo treh izvorov (Onm_en, Onm_p, Onm_o) na vrednost vseh nakupov (Vm_tri; R=0,240). Še večjo razliko pa dobimo v primeru števila nakupov (Nm_tri) in korelacije treh izvorov skupaj ter regresije posamično (r = 0,477, R=0,689).

TABELA 3: POTRJENE IN ZAVRNJENE PODHIPOTEZE H3

<table>
<thead>
<tr>
<th>ZAVRNITEV / SPREJETJE</th>
<th>Hipoteze H3</th>
<th>Kupci so več kupili v Merkurju (Vm), če so pred nakupom pogosteje klikali na e-pasice, na vsebino e-pošte in obiskali e-trgovino.</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>H3.a: Kupci so več kupili v Merkurju (Vm_tri), če so pred nakupom pogosteje obiskali e-prodajalno (Onm, vse izvori prihodov skupaj).</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>H3.b: Kupci so več kupili v Merkurju (Vm_tri), če so pred nakupom pogosteje obiskali e-prodajalno preko e-novic (Onm_en).</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>H3.c: Kupci so več kupili v Merkurju (Vm_tri), če so pred nakupom pogosteje obiskali e-prodajalno preko pasic (Onm_p).</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>H3.d: Kupci so več kupili v Merkurju (Vm_tri), če so pred nakupom pogosteje obiskali e-prodajalno skozi e-novice, pasice in druge izvore (Onm_en, Onm_p, Onm_o), [regresija]</td>
<td></td>
</tr>
</tbody>
</table>

Opombe: + potrjena hipoteza, - zavrnjena hipoteza.

Ob ugotovitvi, da je e-komuniciranje vplivalo na nakupe v Merkurju, se je postavilo dodatno vprašanje, ali je stimuliralo tudi e-nakupovanje in s tem vplivalo na spremnjanje nakupovalnih navad. Na prvi pogled se namreč zdi, da bi morala biti primarna naloga vsake e-prodajalne pospeševanje neposredne prodaje po internetu:

H4: Porabniki so opravili več nakupov v e-prodajalni (Nep_tri), če so pogosteje obiskali prodajalno iz e-novic (Onm_en_tri), pasic (Onm_p_tri) ali drugih virov (Onm_o_tri).

- **H4.a:** Porabniki so opravili več nakupov v e-prodajalni (Nep_tri), če so pogosteje obiskali e-prodajalno iz e-novic (Onm_en_tri),
- **H4.b:** Porabniki so opravili več nakupov v e-prodajalni (Nep_tri), če so pogosteje obiskali e-prodajalno preko pasic (Onm_p_tri),

• H4.c: Porabniki so opravili več nakupov v e-prodajalni (Nep_tri), če so pogosteje obiskali e-prodajalno iz drugih virov (Onm_o_tri),
• H4.č: Porabniki so opravili več nakupov v e-prodajalni (Nep_tri), če so pogosteje obiskali e-prodajalno (Onm_tri, vsota prihodov po virih),
• H4.d: Porabniki so opravili več nakupov v e-prodajalni (Nep_tri), če so pogosteje obiskali e-prodajalno iz e-novic (Onm_en_tri), pasic (Onm_p_tri) ali drugih virov (Onm_o_tri). [regresija]

SLIKA 17: ŠTEVILO E-NAKUPOV PO ŠTEVILU OBISKOV E-PRODAJALNE

Opombe: Grafikoni prikazujejo porazdelitev število nakupov v e-prodajalni v trimesečju (Nep_tri) glede na vire obiskov e-prodajalne: e-novice, pasice, drugi prihodi in vsi viri skupaj. Obisk e-prodajalne pred nakupom v Merkurju predstavlja seveda povprečen obisk, če je respondent opravil v opazovanem obdobju več nakupov.

H4.a: Porabniki so opravili več nakupov v e-prodajalni (Nep_tri), če so pogosteje obiskali e-prodajalno iz e-novic (Onm_en_tri).

Povezava med številom obiskov e-prodajalne iz e-novic (Onm_en_tri) in številom e-nakupov v tem času (Nep_tri) ni značilna (r=0,012, α=0,35), zato smo hipotezo zavrnili.
Prav tako tudi ni značilna povezava med številom obiskov e-prodajalne iz e-novic (Onm_en_tri) in vrednostjo e-nakupov v tem času (Vep_tri; r=-0,007, α=0,413).

H4.b: Porabniki so opravili več nakupov v e-prodajalni (Nep_tri), če so pogostejše obiskali e-prodajalno preko pasic (Onm_p).
Povezava med številom obiskov e-prodajalne preko pasic (Onm_p_tri) in številom e-nakupov (Nep_tri) ni značilna (r=-0,002, α=0,471), zato smo tudi to hipotezo zavrnili.

H4.c: Porabniki so opravili več nakupov v e-prodajalni (Nep_tri), če so pogostejše obiskali e-prodajalno iz drugih virov (Onm_o_tri).
Povezava med številom obiskov e-prodajalne iz drugih virov (Onm_o_tri) in številom e-nakupov v tem času (Nep_tri) je pozitivna in značilna, vendar zelo šibka (r=0,074, α=0,009), zato smo ipotezo sprejeli. V tem primeru je pojasnjena le 0,5% variance (r²=0,005), kar je zelo malo. Pearsonova parcialna korelacija med spremenljivkama (Onm_en_o in Nep_tri) ob kontroli drugih dveh izvorov obiska (Onm_p_tri in Onm_en_tri) je značilna in nekoliko višja (r1234=0,118, α=0,001), kar pomeni, da obe kontrollirani spremenljivki delujejo kot dušitelja zveze med Onm_en_o in Nep_tri.

Med številom obiskov e-prodajalne iz drugih virov (Onm_o_tri) in vrednostjo e-nakupov (Vep_tri) ni značilne povezave (r=0,043, α=0,083).

H4.d: Porabniki so opravili več nakupov v e-prodajalni (Nep_tri), če so pogostejše obiskali e-prodajalno iz e-novic (Onm_en_tri), pasic (Onm_p_tri) ali drugih virov (Onm_o_tri).[regresija]
Multipla regresijska analiza kaže šibko pozitivno povezanost spremenljivk s števili nakupov (R=0,075, R²=0,006). Povezava je značilna, pozitivna in zelo šibka, linearna kombinacija neodvisnih spremenljivk pa pojasnjuje le 0,6% variranja Nep_tri. Hipotezo smo sprejeli, vendar moramo vedeti, da analiza zaradi neznačilnosti izključi spremenljivki Onm_p in Onm_en (test anova), zato je rezultat enak kot pri H4.c. Durbin-Watsonov test kaže, da je regresija pravilno izbrana, saj je d=2,050.

Regresija med vrednostjo nakupov (Vep-tri) in tremi izvori prihodov ni značilna.

24 [Onm_en + Onm_p + Onm_o = Onm].
Ugotovili smo, da je pogostost obiska e-prodajalne komaj znatno povezana z večjim številom e-nakupov, vsekakor pa tega sploh ne moremo trditi za pogostost obiskov porabnikov iz e-novic ali pasic.

TABELA 4: POTRJENE IN ZAVRNJENE PODHIPOTEZE H4

<table>
<thead>
<tr>
<th>ZAVRNITEV / SPREJETJE</th>
<th>H4: Porabniki so opravili več nakupov v e-prodajalni (Nep_tri), če so pogosteee obiskali e-prodajalno iz e-novic (Onm_en), pasic (Onm_p) ali drugih virov (Onm_o).</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>H4.a: Porabniki so opravili več nakupov v e-prodajalni (Nep_tri), če so pogostee obiskali e-prodajalno iz e-novic (Onm_en).</td>
</tr>
<tr>
<td>-</td>
<td>H4.b: Porabniki so opravili več nakupov v e-prodajalni (Nep_tri), če so pogostee obiskali e-prodajalno preko pasic (Onm_p).</td>
</tr>
<tr>
<td>+</td>
<td>H4.c: Porabniki so opravili več nakupov v e-prodajalni (Nep_tri), če so pogostee obiskali e-prodajalno iz ostalih virov (Onm_o).</td>
</tr>
<tr>
<td>+</td>
<td>H4.d: Porabniki so opravili več nakupov v e-prodajalni (Nep_tri), če so pogostee obiskali e-prodajalno iz enovic (Onm_en), pasic (Onm_p) ali drugih virov (Onm_o)[regresija].</td>
</tr>
</tbody>
</table>

Opombe: + potrjena hipoteza, - zavrnjena hipoteza.

Oglaševanje s pasicami in e-novicami, ki najbolj stimulirajo obiske v e-prodajalni, pa tudi nakupe v času akcijskih cen v Merkurju, očitno ne povečujejo števila nakupov v e-prodajalni. Šibko jih povečuje le pogostost prihodov iz drugih virov, kar so neposredni vpisi naslova e-prodajalne v brskalnik in kliki na povezave na iskalnikih in spletnih straneh. Te ugotovitve bi lahko nadgradili s podrobnejšim primerjanjem števila e-nakupov po kategorijah izdelkov z vsebino sorodnosti pregradane ponudbe e-prodajalne. Primer je lahko e-nakup gradbenega materiala glede na prihode s spletnih strani, ki svetujejo o gradnji in obnovi ali na primer nakup hladilnika potem, ko je porabnik na iskalniki (npr. Google ali Najdi.si) iskal zadetke po ključnih besedah "hladilnik" ali "bela tehnika". Pri hipotezi H4 moramo upoštevati tudi precej kratko opazovano obdobje (tri mesece) zaradi redkih nakupov v Merkurjevi e-prodajalni.

Ker je intenzivnost e-komunikacijskih dražljajev vplivala šibko na število opravljenih e-nakupov, se je zdelo upravičeno preveriti, kakšen vpliv je imela vsebina oz. kakovost impulzov na e-nakup, kar smo označili z zadovoljstvom z jedrom ponudbe e-prodajalne (ponudba in predstavitev izdelkov, dostava, cena in plačilni pogoji).25

25 Ocene zadovoljstva s posameznim dejavnikom smo zagotovili z anketnim vprašalnikom, spremenljivke števila (Nep_dvan) in vrednosti e-nakupov (Vep_dvan) v 12-ih mesecih pa iz dnevnika spletnega strežnika.
H5: Porabniki, ki so bili bolj zadovoljni s ponudbo (Zpon_i) in predstavitvijo izdelkov (Zpred_i), so pogosteje kupovali v e-prodajalni (Nep_dvan).26

• H5.a: Porabniki, ki so bili bolj zadovoljni s ponudbo izdelkov (Zpon_i), so pogosteje kupovali v e-prodajalni (Nep_dvan).
• H5.b: Porabniki, ki so bili bolj zadovoljni s predstavitvijo izdelkov (Zpred_i), so pogosteje kupovali v e-prodajalni (Nep_dvan).
• H5.c: Porabniki, ki so bili bolj zadovoljni s ponudbo (Zpon_i) in predstavitvijo izdelkov (Zpred_i), so pogosteje kupovali v e-prodajalni (Nep_dvan).[regresija]

SLIKA 18: POGOSTOST E-NAKUPOV GLEDE NA ZADOVOLJSTVO S PONUDBO IN PREDSTAVITVIJO IZDELKOV

Opombe: Grafikoni prikazujejo porazdelitev število nakupov v e-prodajalni v 12 mesecih (Nep_dvan) glede na zadovoljstvo s ponudbo (Zpon_i) in predstavitvijo izdelkov (Zpred_i).

H5.a: Porabniki, ki so bili bolj zadovoljni s ponudbo izdelkov (Zpon_i), so pogosteje kupovali v e-prodajalni (Nep_dvan).

Povezava med zadovoljstvom s ponudbo izdelkov (Zpon_i) in številom e-nakupov v zadnjih 12 mesecih (Nep_dvan) ni značilna (r=0,016, α=0,306), zato smo hipotezo zavrnili.

Takoj se nam je postavilo vprašanje, ali imajo mogoče med respondenti pogostejši internetni kupci (Ie) zaradi višjih pričakovanj drugačno mnenje o ponudbi izdelkov kot ostali respondenti. Povezava med izkušenostjo (Ie) in zadovoljstvom ponudbe izdelkov e-prodajalne (Zpon_i) je značilna in slab negativna (r=-0,125, α=0,000). Enako velja za značilno povezavo med vrednostjo e-nakupov v 12 mesecih (Ve) in zadovoljstvom ponudbe izdelkov e-prodajalne (Zpon_i; r=-0,131, α=0,000). To pomeni, da med respondenti ni povezave med zadovoljstvom in pogostostjo nakupov v e-prodajalni, vendar pa je značilna negativna povezava med zadovoljstvom s ponudbo in izkušenostjo e-nakupovalca z Merkurjevo e-prodajalno! Očitno e-prodajalna ne izpolnjuje pričakovanj pravim internetnim kupcem, za katere lahko predvidevali, da so bolj zahtevni. Ta rezultat je tudi pričakovan zaradi neskladja med ponudbo v klasičnih trgovskih centrih in e-prodajalno. Če se vrnemo še na hipotezo H2, kjer smo ugotovili, da je med izkušenostjo v e-nakupovanju

26 Podrobnejši prikaz medsebojnih korelacij spremenljivk hipoteze H5 se nahaja v Prilogi 12.
(Ie) in številom nakupov v 12 mesecih v e-prodajalni značilna pozitivna povezava (r=252), potem je jasno, da e-prodajalna cilja trg neposrednih kupcev in jih slabo zadovoljuje. Lahko tudi sklepamo, da bi pogosti e-nakupovali več kupovali po internetu, če bi le bili bolj zadovoljni s ponudbo izdelkov. Nastanek podpršanje je tudi, ali je zadovoljstvo s ponudbo izdelkov v e-prodajalni (Zpon_i) kakorkoli povezano z vsemi nakupi v Merkurju v 12 mesecih (N_davan). Povezava med sprememljivkama kaže značilno in slabko negativnost (r=-0,074, α=0,01), kar pomeni, da lahko trdimo, da so respondenti, ki so bili manj zadovoljni s ponudbo izdelkov v e-prodajalni, naredili več nakupov v Merkurju!

Na prvi pogled si težko predstavljamo zelo zadovoljne porabnike, ki potem ne kupujejo blaga in obratno, kljub temu pa so izračuni logični. Če najprej predpostavljamo, da so s ponudbo bolj zadovoljni porabniki opravili manj e-nakupov, je to mogoče v primeru, da so porabniki takrat manj nakupovali in so bili ob anketi tudi manj čustveno vpletene do ponudbe e-prodajalne. Zato so si pri zadovoljstvu s ponudbo izdelkov pripisovali višje oz. bolj nevtralne ocene kot nezadovoljni. Ali pa na primer, če špekuliramo in interpretiramo rezultat tudi tako, da so bolj zadovoljni naredili manj nakupov, so lahko bili porabniki bolj zadovoljni s ponudbo izdelkov zaradi možnosti primerjave s konkurenco, vendar so poten kupovali drugje, e-prodajalna pa je vseeno izpolnila pričakovana, saj jih je informirala o zanje pomembnih dejavnikih. Najbolj smiselna pa se zdj možnost, da so bili nekateri nakupovalci v situaciji, ko so bili globoko vpletani v nakupovanje izdelkov v Merkurju in jim je e-prodajalna slabo pomagala pri reševanju problemov s svojo ponudbo, zato so bili tudi manj zadovoljni z njeno ponudbo. Nakupovali pa so kljub temu v klasičnih trgovskih centrih.

H5.b: Porabniki, ki so bili bolj zadovoljni s predstavitvijo izdelkov (Zpred_i), so pogosteje kupovali v e-prodajalni (Nep_dvan).

Povezava med zadovoljstvom s predstavitvijo izdelkov v e-prodajalni (Zpred_i) in številom e-nakupov v zadnjih 12 mesecih (Nep_davan) ni značilna (r=-0,008, α=0,396), zato smo hipotezo zavrnili. To pomeni, da ni značilne povezave med zadovoljstvom s predstavitvijo izdelkov in pogostostjo nakupov v e-prodajalni.

Dodatno preverjanje izkašenih e-kupcev kaže značilno in negativno (r=-0,116, α=0,000) povezavo med številom e-nakupov v 12 mesecih (Ie) in zadovoljstvom s predstavitvijo izdelkov v e-prodajalni (Zpred_i). To pomeni, da lahko trdimo, da so bolj izkušeni e-kupci manj zadovoljni s predstavitvijo izdelkov v e-prodajalni. Podobno velja za povezavo med vrednostjo e-nakupov v 12 mesecih po internetu (Ve) in zadovoljstvom s predstavitvijo izdelkov v e-prodajalni (Zpred_i), kjer je povezava značilna in negativna (r=-0,095, α=0,002).

H5.c: Porabniki, ki so bili bolj zadovoljni s ponudbo (Zpon_i) in predstavitvijo izdelkov (Zpred_i), so pogosteje kupovali v e-prodajalni (Nep_dvan).[regresija]

Povezave med sprememljivkami so neznačilne, zato smo hipotezo zavrnili.

TABELA 5: POTRJENE IN ZAVRNJENE PODHIPOTEZE H5

<table>
<thead>
<tr>
<th>ZAVRNITEV / SPREJETJE</th>
<th>H5: Porabniki, ki so bili bolj zadovoljni s ponudbo (Zpon_i) in predstavitvijo izdelkov (Zpred_i), so pogosteje kupovali v e-prodajalni (Nep_dvan).</th>
</tr>
</thead>
<tbody>
<tr>
<td>- H5.a: Porabniki, ki so bili bolj zadovoljni s ponudbo izdelkov (Zpon_i), so pogosteje kupovali v e-prodajalni (Nep_dvan).</td>
<td></td>
</tr>
<tr>
<td>- H5.b: Porabniki, ki so bili bolj zadovoljni s predstavitvijo izdelkov (Zpred_i), so pogosteje kupovali v e-prodajalni (Nep_dvan).</td>
<td></td>
</tr>
<tr>
<td>- H5.c: Porabniki, ki so bili bolj zadovoljni s ponudbo (Zpon_i) in predstavitvijo izdelkov (Zpred_i), so pogosteje kupovali v e-prodajalni (Nep_dvan).[regresija]</td>
<td></td>
</tr>
</tbody>
</table>

Opombe: + potrjena hipoteza, - zavrnjena hipoteza.
H6: Porabniki, ki so bili bolj zadovoljni z dostavo (Zdo_i), cenami (Zce_i) in plačilnimi pogoji (Zplac), so pogosteje kupili v e-prodajalni (Nep_dvan).27

- H6.a: Porabniki, ki so bili bolj zadovoljni z dostavo (Zdo_i), so pogosteje kupili v e-prodajalni (Nep_dvan).
- H6.b: Porabniki, ki so bili bolj zadovoljni s cenami izdelkov (Zce_i), so pogosteje kupili v e-prodajalni (Nep_dvan).
- H6.c: Porabniki, ki so bili bolj zadovoljni s plačilnimi pogoji (Zplac), so pogosteje kupili v e-prodajalni (Nep_dvan).
- H6.č: Porabniki, ki so bili bolj zadovoljni z dostavo (Zdo_i), cenami (Zce_i) in plačilnimi pogoji (Zplac), so pogosteje kupili v e-prodajalni (Nep_dvan).

Povezava med zadovoljstvom z dostavo (Zdo_i) in številom e-nakupov v zadnjih 12 mesecih (Nep_dvan) je šibko pozitivna in značilna (r=0,126, α=0,022), zato smo sprejeli trditev. To pomeni, da so respondenti, ki so bili bolj zadovoljni z dostavo, večkrat kupili v e-prodajalni. Izračunali parcialne korelacije med Zdo_i in Nep_dvan ob kontroli zadovoljstev cen (Zce_i) in plačilnih pogojev (Zplac) kaže na neznačilno povezavo (r_1234=0,072, α=0,128), kar pomeni, da Zce_i in Zplac vplivata kot pospeševalca na korelacijo hipoteze H6.a.

Povezave med zadovoljstvom z dostavo (Zdo_i) in vrednostjo e-nakupov v 12 mesecih (Vep_dvan) ni značilna, enako velja za povezavo Zdo_i z izkušenostjo e-kupcev (Ie; r=-.090, α=0,074) in številom nakupov v Merkurju v 12 mesecih (N_dvan, r=-0,070, α=0,131).

SLIKA 19: ŠTEVILO E-NAKUPOV V 12 MESECIH IN ZADOVOLJSTVA S CENAMI, PLAČILNIMI POGOJI IN DOSTAVO

![Slabka za sliko](https://example.com/slika.png)

Podrobnejši prikaz medsebnih korelacij spremenljivk hipoteze H6 se nahaja v Prilogi 13. Ocene zadovoljstva s posameznim dejavnikom smo zagotovili z anketnim vprašalnikom, podatke o številu nakupov (Nep_dvan) pa iz dnevnika spletnega strežnika.

27 Podrobnejši prikaz medsebnih korelacij spremenljivk hipoteze H6 se nahaja v Prilogi 13. Ocene zadovoljstva s posameznim dejavnikom smo zagotovili z anketnim vprašalnikom, podatke o številu nakupov (Nep_dvan) pa iz dnevnika spletnega strežnika.
H6.b: Porabniki, ki so bili bolj zadovoljni s cenami izdelkov (Zce_i), so pogosteje kupili v e-prodajalni (Nep_dvan).

Povezava med zadovoljstvom s cenami in številom e-nakupov v zadnjih 12 mesecih je šibko pozitivna in značilna (r=0,133, α=0,000), zato smo hipotezo sprejeli. To pomeni, da so respondenti, ki so bili bolj zadovoljni s cenami, tudi večkrat kupili v e-prodajalni. Izračunu parcialne korelacije med Zce_i in Nep_dvan ob kontroli zadovoljstva z dostavo (Zdo_i) in plačilnimi pogoji (Zplac) pa kaže na neznachen povezavo (r_{1234}=0,090, α=0,077), kar pomeni, da Zdo_i in Zplac pospešujeta korelacijo hipoteze H6.b.

H6.c: Porabniki, ki so bili bolj zadovoljni s plačilnimi pogoji (Zplac), so pogosteje kupili v e-prodajalni (Nep_dvan).

Povezava med zadovoljstvom s cenami (Zplac) in vrednostjo nakupov v 12 mesecih (Vep_dvan) je prav tako značilna (r=0,112, α=0,001), kar pomeni, da bolj zadovoljni niso le opravili več nakupov v e-prodajalni, ampak so tudi zapravili več denarja. Preverjanje povezave med zadovoljstvom s cenami (Zplac) in izkušenostjo e-kupcev (Ie) pokaže neznachen povezavo (r=,049, α=0,073), kar pomeni, da izkušenost z e-nakupovanjem ni značilno povezana z zadovoljstvom s cenami izdelkov v Merkurjevi e-prodajalni. Podobno kaže odnos zadovoljstva s cenami s številom nakupov v Merkurju v 12 mesecih (N_dvan; r=-0,027, α=0,214), medtem ko je zadovoljstvo s cenami na internetu šibko in značilno pozitivno povezano z vrednostjo nakupov v Merkurju v 12 mesecih (V_dvan; r=0,062, α=0,031)! Zadovoljstvo s cenami izdelkov na internetu je lahko vsaj indikator splošnega zadovoljstva s cenami v Merkurju, saj so bolj zadovoljni kupovali vrednostno več blaga, domnevamo pa lahko tudi, da zadovoljstvo s cenovno politiko v e-prodajalni vpliva na vrednost zapravljenega denarja v Merkurju. Domneve se zdijo smiselne če upoštevamo, da večina porabnikov uporablja internet za iskanje informacij in primerjavo cen izdelkov. Zato mora biti e-prodajalna dinamično marketinško orodje, ki poleg obvladovanja cen dobro diferencira izdelke ter tako povečuje zaznano konkurenčno prednost v multikanalnem okolju.
Povezava med zadovoljstvom s plačilnimi pogoji (Zplac_i) in izkušenostjo e-kupcev (I_e) je šibko pozitivna in značilna ($r=0.900$, $\alpha=0.009$), medtem ko zadovoljstvo s plačilnimi pogoji ni značilno povezano s števili nakupov v Merkurju v 12 mesecih (N_{dvan}; $r=-0.023$, $\alpha=0.276$) in vrednostjo nakupov v 12 mesecih (V_{dvan}, $r=0.040$, $\alpha=0.147$).

H6.c: Porabniki, ki so bili bolj zadovoljni z dostavo (Zdo_i), cenami (Zce_i) in plačilnimi pogoji (Zplac), so pogosteje kupili v e-prodajalni (Nep_dvan).[regresija]

Pri izračunu multiplega korelacijskega koeficienta ugotovimo, da je povezava šibka, pozitivna in značilna (R=0.209, $R^2=0.044$), linearna kombinacija neodvisnih spremenljivk pa pojasnjuje le 4,4% variranja Nep_dvan. Zato smo hipotezo sprejeli: respondenti, ki so bolj zadovoljni s cenami, plačilnimi pogoji in dostavo, so večkrat kupili v e-prodajalni v 12 mesecih. Durbin-Watsonov test kaže, da je regresija pravilno izbrana, saj je d=1.989.

TABELA 6: POTRJENE IN ZAVRNJENE PODHIPOTEZE H6

<table>
<thead>
<tr>
<th>ZAVRNITEV / SPREJETJE</th>
<th>H6: Porabniki, ki so bili bolj zadovoljni z dostavo (Zdo_i), cenami (Zce_i) in plačilnimi pogoji (Zplac), so pogosteje kupili v e-prodajalni (Nep_dvan).</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>H6.a: Porabniki, ki so bili bolj zadovoljni z dostavo (Zdo_i), so pogosteje kupili v e-prodajalni (Nep_dvan).</td>
</tr>
<tr>
<td>+</td>
<td>H6.b: Porabniki, ki so bili bolj zadovoljni s cenami izdelkov (Zce_i), so pogosteje kupili v e-prodajalni (Nep_dvan).</td>
</tr>
<tr>
<td>+</td>
<td>H6.c: Porabniki, ki so bili bolj zadovoljni s plačilnimi pogoji (Zplac), so pogosteje kupili v e-prodajalni (Nep_dvan).</td>
</tr>
<tr>
<td>+</td>
<td>H6.č: Porabniki, ki so bili bolj zadovoljni z dostavo (Zdo_i), cenami (Zce_i) in plačilnimi pogoji (Zplac), so pogosteje kupili v e-prodajalni (Nep_dvan).</td>
</tr>
</tbody>
</table>

Opombe: + potrjena hipoteza, - zavrnjena hipoteza.

Poleg vpliva ponudbe in povezanih storitev smo se seveda dodatno vprašali, kako na e-nakupovanje vplivajo elementi kakovosti uporabniškega vmesnika (preglednost, enostavnost in hitrost iskanja):

H7: Porabniki, ki so se bolj strinjali, da je e-prodajalna pregledna (EPpreg), brskanje po njej enostavno (EPbrsk) in da je mogoče iskane izdelke hitro najti (EPisk), so pogosteje kupili v e-prodajalni (Nep_dvan).

- **H7.a:** Porabniki, ki so se bolj strinjali, da je e-prodajalna pregledna (EPpreg), so pogosteje kupili v e-prodajalni (Nep_dvan).
- **H7.b:** Porabniki, ki so se bolj strinjali, da je brskanje po e-prodajalni enostavno (EPbrsk), so pogosteje kupili v e-prodajalni (Nep_dvan).

28 Podrobnejši prikaz medsebojnih korelacij spremenljivk hipoteze H7 se nahaja v Prilogi 14. Strinjanje s stališči navigacijskih elementov smo izmerili z anketnim vprašalnikom, podatke o številu nakupov (Nep_dvan) v e-prodajalni za 12 mesecev pa iz dnevnika spletnega strežnika.
H7.c: Porabniki, ki so se bolj strinjali, da je mogoče iskane izdelke v e-prodajalni hitro najti (EPisk), so pogostje kupili v e-prodajalni (Nep_dvan).

SLIKA 20: ŠTEVILO E-NAKUPOV V 12 MESECIH IN STRINJANJE S PREGLEDNOSTJO, ENOSTAVNOSTJO BRSKANJA IN HITROSTJO ISKANJA IZDELKOV V E-PRODAJALNI

H7.a: Porabniki, ki so se bolj strinjali, da je e-prodajalna pregledna (EPpreg), so pogostje kupili v e-prodajalni (Nep_dvan).

Povezava med preglednostjo e-prodajalne (EPpreg) in številom e-nakupov v zadnjih 12 mesecih v e-prodajalni (Nep_dvan) ni značilna (r=0,014, α=0,324), zato smo zavrnili hipotezo. Zato trdimo, da zaznana preglednost e-prodajalne ni vplivala na število nakupov v njej.

H7.a: Porabniki, ki so se bolj strinjali, da je e-prodajalna pregledna (EPpreg), so pogostje kupili v e-prodajalni (Nep_dvan).

Povezava med preglednostjo e-prodajalne (EPpreg) in številom e-nakupov v zadnjih 12 mesecih v e-prodajalni (Nep_dvan) ni značilna (r=0,014, α=0,324), zato smo zavrnili hipotezo. Zato trdimo, da zaznana preglednost e-prodajalne ni vplivala na število nakupov v njej.

Korelacijska matrika pokaže še zanimivo šibko negativno, toda značilno, povezavo med izkušenostjo e-kupcev oz. Je in strinjanjem s preglednostjo (r=-0,080, α=0,003), kar pomeni, da bolj izkušeni e-nakupovalci zaznavajo e-prodajalno kot nekoliko manj pregledno, verjetno zaradi pogostejših izkušenj z drugimi e-prodajalnami, zato imajo višja pričakovanja. Ob spremenljivki preglednost e-prodajalne pa se nam postavi še vmesno vprašanje, ali je preglednost povezana z zadovoljstvom s ponudbo izdelkov. V tem primeru lahko potrdimo, da so porabniki, ki se jim zdi e-prodajalna bolj pregledna, tudi bolj zadovoljni s ponudbo in
H7.b: Porabniki, ki so se bolj strinjali, da je brskanje po e-prodajalni enostavno (EPbrsk), so pogostejše kupili v e-prodajalni (Nep_dvan).

Povezava med enostavnostjo brskanja in številom e-nakupov v e-prodajalni ni značilna (r=0,023, α=0,228), zato smo hipotezo zavrnili, enaka ugotovitev je tudi v odnosu med enostavnostjo brskanja in vrednostjo nakupov (Vep_dvan, r=0,009, α=0,392). Enostavnost brskanja po vmesniku v primeru Merkurjeve e-prodajalne ne vpliva na število in letno vrednost e-nakupov.

Podobno kot pri preglednosti, je tudi enostavnost brskanja značilno pozitivno in skoraj srednje močno povezana z zadovoljstvom s ponudbo izdelkov (Zpon, r=0,406, α=0,000) in njihovo predstavitvijo (Zpred_i, r=0,385, α=0,000).

H7.c: Porabniki, ki so se bolj strinjali, da je mogoče iskane izdelke v e-prodajalni hitro najti (EPisk), so pogostejše kupili v njej (Nep_dvan).

Izračun povezave med hitrostjo iskanja in e-nakupi tudi kaže na neznačilnost (r=0,001, α=0,487), tako kot pri prejšnjih dveh dejavnih uporabniških izkušnjah, zato bomo to hipotezo zavrnili, enaka pa je z vrednostjo e-nakupov (Vep_dvan, r=-0,002, α=0,472).

Podobno je tudi hitrost iskanja v e-prodajalni značilno povezana z zadovoljstvom s ponudbo izdelkov (Zpon, r=0,424, α=0,000) in zadovoljstvom s predstavitvijo izdelkov (Zpred_i, r=0,353, α=0,000). Podatki kažejo, da je zaznana hitrost iskanja izdelkov v e-prodajalni šibko negativno povezana z izkušenostjo e-kupcev (Ie, r=-0,081, α=0,002; Ve, r=0,068, α=0,008), podobno je tudi s skupnim številom nakupov v 12 mesecih v Merkurju (N_dvan, r=-0,063, α=0,011). Porabniki, ki so več kupovali v Merkurju v zadnjem letu, menijo, da je iskanje izdelkov v e-prodajalni počasnejše. Enaka stališča imajo tudi porabniki, ki so večkrat kupovali po internetu. Domnevamo lahko, da so bili ti respondenti v preteklem letu bolj vpeti v e-nakupovanje tudi v Merkurjevi e-prodajalni, zato so glede na intenzivnejšo uporabniško izkušnjo bolj kritični in so se opredelili za nižjo stopnjo ocene hitrosti iskanja izdelkov (seveda pa je manj verjetna druga razlaga, da bi porabniki, ki so manj kupovali, hitreje našli izdelke, saj imajo tudi manj izkušenj z navigacijo e-prodajalne).

Vse tri neodvisne spremenljivke niso korelirane s številom nakupov v e-prodajalni (Nep_dvan), zato smo hipotezo H7 v celoti zavrnili. V primeru Merkurjeve e-prodajalne torej ne moremo trditi, da porabniki, ki se bolj strinjajo s preglednostjo designa, enostavnostjo brskanja in hitrostjo iskanja, opravijo več e-nakupov.

Spremenljivke preglednosti, enostavnosti brskanja in hitrosti iskanja so med seboj močno korelirane: preglednost e-prodajalne (EPreg) z enostavnostjo brskanja (EPbrsk, r=0,721, α=0,000) in hitrostjo iskanja izdelkov (EPisk, r=0,616, α=0,000) ter enostavnost brskanja (EPbrsk) s hitrostjo iskanja (EPisk, r=0,645, α=0,000). To pomeni, da bi lahko šlo za enovit zaznavni konstruk "tehnične uporabnosti" e-prodajalne, vezano na pregled ponudbe in pridobivanje informacij.
TABELA 7: POTRJENE IN ZAVRNJENE PODHIPOTEZE H7

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- H7.a: Porabniki, ki so se bolj strinjali, da je e-prodajalna pregledna (EPpreg), so pogosteje kupili v e-prodajalni (Nep_dvan).</td>
</tr>
<tr>
<td></td>
<td>- H7.c: Porabniki, ki so se bolj strinjali, da je mogoče iskane izdelke v e-prodajalni hitro najti (EPisk), so pogosteje kupili v njej (Nep_dvan).</td>
</tr>
</tbody>
</table>

Opombe: + potrjena hipoteza, - zavrnjena hipoteza.

V zadnji hipotezi smo želimo preveriti predviden končni teoretični model spremenljivk, ki bi lahko vplival na pogostost e-nakupovanja:

H8: Na pogostost nakupov v e-prodajalni so vplivali: internetne lastnosti porabnika (Li), privlačnost ponudbe (Zp), ustreznost spletnega vmesnika (Zep) in komunikacija z e-okoljem (Oep).

Izračun Crombach alfe (\(α_{Crombach}\)) je pokazal naslednje vrednosti: Li=0,2, Zp=0,63, Zep=0,85 in Oep=0,18. Stopnja zanesljivosti konstrukta predmetov je ustrezna le pri preglednosti, iskanju in navigiranju v e-prodajalni (Zep, \(α_{Crombach}=0,85\), ostali konstrukti pa niso bili ustreznii.

29 Podrobnejši prikaz medsebojnih korelacij spremenljivk hipoteze H8 se nahaja v Prilogi 15.
Opmobe: Rešiti bi želeli sistem strukturnih enačb:

1. \(\text{Nep}_\text{tri} = x_1 \times \text{Li} + x_2 \times \text{Zp} + x_3 \times \text{Zep} + x_4 \times \text{Oep} + e_1, \)
2. \(\text{Li} = x_1 \times \text{le} + x_2 \times \text{Ui} + e_2, \)
3. \(\text{Zp} = x_1 \times \text{Zpon} + x_2 \times \text{Zpred} + x_3 \times \text{Zdo}_i + x_4 \times \text{Zce}_i + x_5 \times \text{Zplac} + e_3, \)
4. \(\text{Zep} = x_1 \times \text{EPpreg} + x_2 \times \text{EPbrsk} + x_3 \times \text{EPisk} + e_4 \text{ in} \)
5. \(\text{Oep} = x_1 \times \text{Oep}_\text{en}_\text{tri} + x_2 \times \text{Oep}_\text{p}_\text{tri} + x_3 \times \text{Oep}_\text{o}_\text{tri} + e_5. \)

Simboli: \(\text{Li} \) – v internetne lastnosti porabnika smo želeli združiti pogostost uporabe interneta (\(\text{Ui} \)) in izkušenost v e-nakupovanju (\(\text{le} \)); \(\text{Zp} \) - spremenljivka privlačnost ponudbe bi pomenila zadovoljstvo z osnovnimi elementi ponudbe na spletu: ponudbe izdelkov (\(\text{Zpon} \)), predstavitve izdelkov (\(\text{Zpred} \)), dostave (\(\text{Zdo}_i \)), cene (\(\text{Zce}_i \)) in plačilnih pogojev (\(\text{Zplac} \)); \(\text{Zep} \) - spremenljivka ustreznost iskalnih in navigacijskih elementov oz. uporabnost e-prodajalne agregira strinjanje z zaznano preglednostjo (\(\text{EPpreg} \)), enostavnost brskanja (\(\text{EPbrsk} \)) in iskanja (\(\text{EPisk} \)); \(\text{Oep} \) pomeni skupno spremenljivko pogostosti interakcije z e-prodajalno iz različnih virov (število klikov na pasice in e-pošto ter obiski e-prodajalne).

Že ob pogledu na korelacijsko matriko je bilo vidno, da imajo vsi trije predmeti designa (\(\text{EPpreg} \), \(\text{EPbrsk} \) in \(\text{EPisk} \)) neznacilno korelacijo z pogostostjo e-nakupovanja v trimesečju (\(\text{Nep}_\text{tri} \)), zato tudi endogena spremenljivka \(\text{Zep} \) ne more biti značilno povezana z \(\text{Nep}_\text{tri} \).\(^{30}\) Od endogenih dejavnikov je po notranji zanesljivosti veljalo preveriti tudi zadovoljstvo z elementi ponudbe (\(\text{Zp} \), \(\alpha_{\text{Crombach}}=0,63 \)) in njene eksogene spremenljivke (\(\text{Zpon}, \text{Zpred}, \text{Zdo}_i, \text{Zce}_i \) in \(\text{Zplac} \)). Sodeč po korelacijski matriki, razpade zadovoljstvo z elementi ponudbe (\(\text{Zp} \)) na dva endogena konstrukta: kombinacijo zadovoljstva s ponudbo in predstavitvijo izdelkov (\(\text{Zpon} \) in \(\text{Zpred} \)), ki sta med seboj srednje močno korelirani (\(r=0,467, \alpha=0,000; \alpha_{\text{Crombach}}=0,636 \)), imata pa tudi močno povezavo s spremenljivkami uporabnosti prodajalne (\(\text{Zep} \)). Vendar sta tudi neznacilno povezani s številom e-nakupov v trimesečju (\(\text{Nep}_\text{tri} \)), zato sta v našem primeru neuporabni kot primarni vplivni faktor.\(^{31}\) Drugi kognitivni konstrukti pa sestavljajo zadovoljstvo z dostavo, cenami in plačilnimi pogoji (\(\text{Zdo}_i, \text{Zce}_i \) in \(\text{Zplac} \); medsebojne \(r=0,25, \alpha=0,000; \alpha_{\text{Crombach}}=0,508 \), predvsem s težo na cenovnih pogojih (\(\text{Zce}_i \) in \(\text{Zplac} \)), ki sta tudi šibkeje značilno povezani s števili e-nakupov v trimesečju (\(r=0,13, \alpha=0,000 \)), podobno so vse tri (okrog \(r=0,2 \) povezane z

\(^{30}\) To lahko dodatno potrdimo tudi s pomočjo faktorske analize (npr. z metodo factoringa vodilne osi) vseh treh eksogenih spremenljivk (\(\text{EPpreg} \), \(\text{EPbrsk} \) in \(\text{EPisk} \)), s katero kričamo spremenljivko \(\text{Zep} \) fact in izračunamo Pearsonov koeficient med \(\text{Zep} \) fact in \(\text{Nep}_\text{tri} \), ki seveda ni značilen (\(r=0,013, \alpha=0,343 \)).

\(^{31}\) Če združimo predmete designa (\(\text{EPpreg} \), \(\text{EPbrsk} \) in \(\text{EPisk} \)) in zadovoljstvo z ponudbo in predstavitvijo izdelkov (\(\text{Zpon} \) in \(\text{Zpred} \)), dobi konstrukt visoko notranjo zanesljivost (\(\alpha_{\text{Crombach}}=0,818 \)), ki pa je kot že rečeno neznacilno povezan s števili nakupov v e-prodajalni (\(\text{Nep}_\text{tri} \)).
Zadovoljstvom s ponudbo izdelkov in predstavitvijo ter predmeti designa (Zep). Če upoštevamo statistične dogovore (Bryman in Cramer, 271-272), da nekorelirane spremenljivke ne morejo tvoriti skupnega faktorja in da je smiselna koreliranost faktorjev s koeficientom vsaj $r=0,3$ (9% pojasnjene variance), potem bi bilo v našem primeru smotorno združiti le zadovoljstvo s ponudbo in predstavitvijo (Zpon in Zpred), endogeni faktor pa nima ustrezno visoke notranje zanesljivosti ($\alpha_{crambach}=0,636 < 0,8$) in kot že rečeno, ni značilno povezan s števili nakupov v e-prodajalni (Nep_tri). Očitno je prišlo do kolapsa predvidenega meritvenega modela, zato lahko konstrukt hipoteze H8 zavrnemo!

SLIKA 22: POVEZANOST SPREMLJIVK V MODELU H8

![Diagram](image)

Iz korelacijske matrike je razvidno, da so štiri eksogene spremenljivke vendarle značilno in šibko pozitivno povezane s številom nakupov v trimesečju, zato smo naredili analizo poti med štirimi eksogenimi spremenljivkami (Ie, Zce, Zplac in Oep_o_tri) in številom nakupov v e-prodajalni v trimesečju (Nep_tri). Drugih devet spremenljivk, ki posredno vplivajo na število nakupov ne bomo upoštevali. Dobimo torej sistem strukturnih enačb, ki ga štirikrat vstavimo v linearno regresijo:

1. \[\text{Nep}_{-}\text{tri} = x_1\text{Oep}_{-}\text{o_tri} + x_2\text{Zplac} + x_3\text{Zce}_{-}\text{i} + x_4\text{Ie} + e_1, \]
2. \[\text{Oep}_{-}\text{o_tri} = x_1\text{Ie} + e_2, \]
3. \[\text{Zplac} = x_1\text{Ie} + e_3 \]
4. \[\text{Zce} = x_1\text{Oep}_{-}\text{o_tri} + e_4. \]

SLIKA 23: POVEZANOST EKSOGENIH SPREMENLJIVK GLEDE NA ANALIZO POTI

Opombe: Puščice pomenijo značilno povezavo. Štiri eksogene spremenljivke so šibko pozitivno povezane s števili nakupov v e-prodajalni. Pri analizi poti nismo upoštevali korelacij in sekundarnih vplivov ostalih devetih eksogenih spremenljivk na e-nakupe, posredno skozi štiri značilne. Moč posrednega vpliva je produkt neposrednega in posrednega vpliva. Na primer, izkušenost v e-nakupovanju (Ie) je povezana s pogostostjo uporabe interneta (Ui; r=0,185, moč posrednega vpliva Ui na Nep_tri je torej 0,185*0,19=0,035), zadovoljstvo s cenami izdelkov (Zce_i) in plačilnimi pogoji (Zplac) imata nabor značilnih korelacij (od r=0,12 do r=0,28) z zadovoljstvom s ponudbo, predstavljajo izdelkov, dostavo in stališči o uporabnosti vmesnika (Zpon, Zpred, Zdo_i, EPpreg, Epbrsk, EPisk). Poleg tega je potrebno upoštevati še njihove medsebojne odnose … Ponovno smo videli (kot v H2), da vpliva najmočnejše na e-nakupovanje pogostost nakupov po internetu (Ie, r=0,19), kar kaže na segment kupcev, ki nakupujejo po elektronskih kanalih.

Z analizo poti bi lahko naredili precej manj linearno in zelo preprečeno mrežno strukturo korelacij, če bi upoštevali vseh 13 eksogenih spremenljivk, vendar dobimo na koncu le štiri šibke neposredne korelacije s številom nakupov v e-prodajalni. Zato moramo kljub kolapsu endogenih spremenljivk in predvidenega meritvenega modela upoštevati dejstvo, da

nekatera eksogene spremenljivke sicer šibko, vendar značilno vplivajo na število nakupov v e-prodajalni, ob omejitvi merjenja, skromnega števila e-nakupov in opazovalnega obdobja treh mesecev, saj je v tem času izvršilo e-nakup le okrog 600 e-nakupovalcev oz. 55 od 1031 respondentov.

Število nakupov v trimesečju (Nep_tri) smo testno primerjali tudi s socio-demografskimi lastnostmi respondentov (spol, izobražba, starost, zaposlenost in regija) in ugotovili, da je število nakupov zelo šibko povezano s spolom (eta=0,079, α=0,026), drugi dejavniki pa nimajo značilnega vpliva na nakupe v e-prodajalni. Zanimivo je, da niti spol niti drugi socio-demografski dejavniki niso značilno povezani z e-nakupi v 12 mesecih (Nep_dvan), prav tako tudi ne z vsemi nakupi v Merkurju (Nm_dvan). So pa nekateri socio-demografski dejavniki, razen regije izvora respondenta, šibko povezani z elementi designa in zadovoljstvom s ponudbo in predstavitvijo izdelkov.

 Primerjava porabnikov po izbranih lastnostih

Preden bi sklenili raziskavo, se je zdela odlična priložnost za primerjavo podatkov o naših respondentih s kakšno drugo populacijo oz. drugim primerljivim vzorcem. Namreč, še vedno je ostalo aktualno dejstvo, da smo v anketi s piškotki in številko Merkurjeve kartice zaupanja (Mkz) identificirali le polovico respondentov, saj smo pri analizi odgovorov na anketno ugotovili, da je bilo od izpolnjenih 2642 vprašalnikov le 1031 primernih za nadaljnjo obdelavo v skladu z našimi pričakovanji (vebovali so tako piškotek kot številko Mkz), nadaljnjih 346 respondentov je sicer vpisalo številko Mkz, vendar so imeli blokirani piškotek, 1265 respondentov (48 odstotkov anketirancev) pa sploh ni vpisalo številke Mkz. Nevpisani številki Mkz so verjetno botrovali različni dejavniki: bojazen pred zlorabo zasebnosti, kartice ni bilo pri roki ali pa respondenti sploh niso imetniki kartice.

Merkurjeve kartice zaupanja, saj večina nakupovalcev opravi nakupe v klasičnih trgovskih centrih, zato nas je zanimalo, ali se povprečen imetnik kartice razlikuje od e-nakupovalca.

Primerjavo različnosti med vzorci smo izvedli s pomočjo testa dveh nepovezanih vzorcev imenovanem Hi-qvadrat (\(\chi^2\)).\(^{33}\) Pri primerjavi vzorcev nas je zanimala porazdelitev po spolu, starosti, regijskih pripadnosti, izobrazbi, e-nakupovanju in nakupovanju v Merkurju. Seveda smo ob posamezné spremenljivki primerjali le vzorce, za katere so bili podatki dostopni, načeloma pa je bilo na voljo pet vzorcev glede na izvor podatkov: respondenti ankete z vpisano številko Mkz (\(A_{mkz}\)) in brez vpisane številke Mkz (\(A_{-mkz}\)), dodatni vzorec respondenlov ankete z vpisano številko Mkz (\(A_{mv}^{mv}\), vendar s podatki iz baze Mkz (zaradi primerjave izpisa podatkov iz Merkurjeve baze z njihovo lastno oceno v anketi), vzorec imetnikov Merkurjeve kartice zaupanja iz baze Mkz (\(B_{mv}^{mv}\)) in respondenti raziskave RISII/2004 (\(R_{ris}\)).

SLIKA 24: ZANIMIVE SKUPINE PORABNIKOV

Opombe: Podatke o nekaterih lastnostih za respondente ankete z Mkz smo lahko pridobili po dveh virih (anketa ali baza Mkz: npr. regija po poštni številki, starost, število e-nakupov v e-prodajalni), zato smo oblikovali dva vzorca istih respondentov: \(A_{mkz}\) in \(A_{-mkz}\).

Vzorca respondentov ankete (\(A_{mkz}\) in \(A_{-mkz}\)) smo dobili s splošno anketo, primerjalni vzorec respondentov ankete z vpisano številko Mkz (\(A_{mv}^{mv}\)) pa tako, da smo naredili izpis podatkov iz Merkurjeve baze po številki kartice, vpisane v anketi.

Vzorec imetnikov Merkurjeve kartice zaupanja (\(B_{mv}^{mv}\)) smo oblikovali tako, da smo dne 25.7.2005 v Microsoft Excelu pogledali, kako se v tem programu zapiše datum numerično, torej 25.7.2005 je bilo enako 38558 (program MS Excel začne šteti datume s 1. januar 1900 = 1, 2. januar 1900 = 2 itd...), nato pa smo izpisali vsako petdeseto številko od 38558 do 0 in od 38558 do 999999 (Merkurjeve kartice zaupanja se številčijo od 0 do 999999). Dobili smo 18000 oddanih števil, iz katerih smo izpisali vse kartice, ki so imele zaveden vsaj en nakup v Merkurju od 15.6.2004 do 15.6.2005. Iz baze se je izpisalo 6015 v 12 mesecih aktivnih kartic. Ocena aktivnih imetnikov Merkurjeve kartice, ki v 12 mesecih opravijo vsaj 1 nakup

\(^{33}\) V primeru, da je bilo v kontingenčni tabeli dimenzije 2*2 število vseh primerov (skupna vsota frekvenc) večje kot 40, potem smo absolutno razliko med opazovano in pričakovano frekvenco zmanjšali za 0,5 oz. izvedli t.i. Yatesovo korekcijo Hi-qvadrata in v teh primerih test Hi-qvadrata označili z \(\chi^2_{Yates}\). Podrobnejši prikaz frekvenčnih porazdelitev lastnosti vzorcev in formula za izračun \(\chi^2\) se nahajajo v Prilogi 16.

Podatki so bili med seboj primerjani in uravnoteženi, mi pa smo uporabili frekvenčne porazdelitve skupnega vzorca (Vehovar in Šijanec 2005).

1. Spol

Pred primerjavo vzorcev smo ugotovili, da v bazi Mkz ni zajet podatek o spolu imetnika kartice. Zato smo s pomočjo intervjuja sodelavce Albine Karner (2005)34 in na podlagi izpisa imen in priimkov imetnikov Mkz določili njihov spol. Pri neznanih imenih in imenih, pri katerih smo ugotovili, da lahko pripadajo obema spoloma (npr. Saša), smo se odločili za naključno izbiro: prvo ime, ki se ga ni dalo določiti, je bilo moško, naslednji pojav istega imena smo označili kot žensko, nato spet moško itd. (nedoločljivih imen je bilo okoli 3 odstotke). Tako je vzorec naključnih imetnikov Mkz dobil oceno spola (\(B_{\text{mck}}\)), zato se je zdelo pravilno, da ocenimo spol tudi glede na izpis imena iz baze Mkz pri respondentih spletne ankete, ki so vpisali številko kartice (\(A_{\text{mck}}\) – spol, označen v anketi, in \(A_{\text{mck}}^{\text{om}}\) – spol, ocenjen glede na ime nosilca iste kartice). Zato bo primerjava med \(B_{\text{mck}}^{\text{om}}\) in \(A_{\text{mck}}^{\text{om}}\) bolj zanesljiva, saj smo pri obeh vzorcih uporabljali enaka merila določitve spola.

Test porazdeljenosti spolov kaže, da nista značilno različna vzorca respondentov iz ankete z vpisano številko Mkz (\(A_{\text{mck}}\)) in vzorec baze Mkz (\(B_{\text{mck}}^{\text{om}}\)). Podobno je pri vzorcih respondentov z vpisano številko Mkz (\(A_{\text{mck}}\)) in e-nakupovalcih raziskave RIS (\(R_{\text{nis}}\)). To pomeni, da je razmerje spolov med respondenti ankete, ki so vpisali številko kartice, podobno, kot je splošno razmerje v bazi Merkurjeve kartice zaupanja (čeprav gre za našo oceno spola) in splošno razmerje med e-nakupovalci v Sloveniji.

Razmerje spolov pri respondentih ankete s kartico (\(A_{\text{mck}}\)) je različno kot pri respondentih, ki niso vpisali številke kartice (\(A_{\text{mck}}\)), pa tudi pri lastnem vzorcu, ki smo mu mi določali spol (\(A_{\text{mck}}^{\text{om}}\)). Vendar se \(A_{\text{mck}}^{\text{om}}\) značilno ne razlikuje po spolu od vzorca baze (\(B_{\text{mck}}^{\text{om}}\)), ki smo mu prav tako sami določili spol.

Številko 34 Albina Karner je v oddelku Marketing v Merkurju odgovorna za poslovne vizitke in ima na področju imen in priprave marketinških publikacij dolgoletne izkušnje.
TABELA 8: HI-KVADRAT MED VZORCI ZA SPOL

<table>
<thead>
<tr>
<th></th>
<th>A_{mkz}</th>
<th>A_{mkz}</th>
<th>$B_{ocena_{mkz}}$</th>
<th>R_{ris}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{mkz}</td>
<td>13,75</td>
<td>4,56</td>
<td>0,45</td>
<td></td>
</tr>
<tr>
<td>A_{mkz}</td>
<td>55,33</td>
<td>15,14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_{ocena_{mkz}}$</td>
<td>0,66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_{ocena_{mkz}}$</td>
<td>8,29</td>
<td>43,63</td>
<td>2,74</td>
<td>3,23</td>
</tr>
</tbody>
</table>

Opombe: Krepko označene vrednosti pomenijo značilno različno frekvenčno porazdelitev v vzorcih. Kritične vrednosti Hi-kvadrat za značilno različna vzorca, pri df=1 stopnje stopinj prostosti enostransko so: $\alpha=0,05$: $\chi^2=2,71$, $\alpha=0,025$: $\chi^2=3,84$ in $\alpha=0,005$: $\chi^2=6,64$.

Simboli: A_{mkz} - respondenti ankete z vpisano številko Mkz, A_{mkz} - respondenti ankete brez vpisane številke Mkz, $B_{ocena_{mkz}}$ - vzorec baze Mkz, $A_{ocena_{mkz}}$ - respondenti ankete z vpisano številko Mkz, vendar s sekundarno oceno spola, R_{ris} - respondenti raziskave RIS.

2. Starost

Primerjava petih starostnih skupin (od 10 do 19, od 20 do 29, od 30 do 49, od 50 do 65 in nad 66 let) je pokazala različno starostno porazdelitev respondentov ankete z vpisano Mkz (A_{mkz}) z vsemi ostalimi vzorci, posebej pomembno pa se zdi, da se po starostni porazdelitvi vsi vzorci razlikujejo med seboj.

Izračun je dokaz, da se po starostni razporeditvi respondenti spletne ankete in imetniki kartice značilno razlikujejo od porazdelitve Merkurjevih kupcev, pa tudi od lastnih podatkov v bazi, kar namiguje na pomanjkljivo zanesljivost podatkov v bazi.

TABELA 9: HI-KVADRAT MED VZORCI ZA STAROST

<table>
<thead>
<tr>
<th></th>
<th>A_{mkz}</th>
<th>A_{mkz}</th>
<th>$B_{ocena_{mkz}}$</th>
<th>R_{ris}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{mkz}</td>
<td>151,27</td>
<td>444,69</td>
<td>175,81</td>
<td></td>
</tr>
<tr>
<td>A_{mkz}</td>
<td>1407,80</td>
<td>17,78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_{ocena_{mkz}}$</td>
<td>1516,89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_{ocena_{mkz}}$</td>
<td>60,28</td>
<td>298,55</td>
<td>150,93</td>
<td>322,98</td>
</tr>
</tbody>
</table>

Opombe: Krepko označene vrednosti pomenijo značilno različno frekvenčno porazdelitev v vzorcih. Kritične vrednosti Hi-kvadrat za značilno različna vzorca, pri df=1 stopnje stopinj prostosti enostransko so: $\alpha=0,05$: $\chi^2=2,71$, $\alpha=0,025$: $\chi^2=3,84$ in $\alpha=0,005$: $\chi^2=6,64$.

Simboli: A_{mkz} - respondenti ankete z vpisano številko Mkz, A_{mkz} - respondenti ankete brez vpisane številke Mkz, $B_{ocena_{mkz}}$ - vzorec baze Mkz, $A_{ocena_{mkz}}$ - respondenti ankete z vpisano številko Mkz, vendar s sekundarno oceno spola, R_{ris} - respondenti raziskave RIS.
3. Regija

Ob primerjavi regijske pripadnosti po poštnih številkah (od 1000 do 1999, od 2000 do 2999, od 3000 do 3999, od 4000 do 4999, od 5000 do 5999, od 6000 do 6999, od 8000 do 8999, od 9000 do 9999) je bilo vidno, da se respondenti ankete z vpisano številko Mkz (A\text{mkz}) razlikujejo od naključnega vzorca iz Merkurjeve baze (B\text{mv}^\text{mv}) in respondentov raziskave RIS (R\text{ris}). Vendar pa se (A\text{mkz}) ujemajo z lastnim vzorcem, kjer je regija izpisana iz baze (A\text{mv}^\text{mv}). Očitno smo pri anketi dosegli souporabnike Merkurjeve kartice, ki se od nosilca kartice razlikujejo po spolu ali starosti. To pomeni, da podatki iz baze dajejo le približno točne podatke o porabnikih na internetu in o uporabnikih kartic. Po regijski pripadnosti so si tudi podobni respondenti ankete, ki niso imetniki kartice in respondenti Ris-a, od katerih pa se anketiranci s kartico razlikujejo, značilno različni pa so tudi od naključno izbranih imetnikov kartice.

TABELA 10: HI-KVADRAT MED VZORCI ZA REGIJO

<table>
<thead>
<tr>
<th></th>
<th>A\text{mkz}</th>
<th>A\text{mv}^\text{mv}</th>
<th>B\text{mv}^\text{mv} \text{A}\text{mkz}</th>
<th>R\text{ris}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A\text{mkz}</td>
<td>15,69</td>
<td>91,87</td>
<td>46,59</td>
<td>13,38</td>
</tr>
<tr>
<td>A\text{mv}^\text{mv}</td>
<td>64,44</td>
<td>35,40</td>
<td>43,80</td>
<td>40,85</td>
</tr>
</tbody>
</table>

Opombe: Kreplko označene vrednosti pomenijo značilno različno frekvenčno porazdelitev v vzorcih. Kritične vrednosti Hi-kvadrat za značilno različna vzorca, pri df=1 stopnje stopinj prostotino enostransko so: α=0,05: \(\chi^2 = 2,71 \), α =0,025: \(\chi^2 = 3,84 \) in α=0,005: \(\chi^2 = 6,64 \).

Simboli: A\text{mkz} - respondenti ankete z vpisano številko Mkz, A\text{mv}^\text{mv} - respondenti ankete brez vpisane številke Mkz, B\text{mv}^\text{mv} - vzorcec baze Mkz, A\text{mv}^\text{mv} - respondenti ankete z vpisano številko Mkz, vendar s sekundarno oceno spola, R\text{ris} - respondenti raziskave RIS.

Pregled frekvenčnih porazdelitev (Priloga 16) kaže, da je med obema vzorca internetnih anketiranci najbolj izstopajoča regija osrednje Slovenije (pošta 1000+). V relativnih deležih (zastopanost v 0,33 pri imetnikih Mkz in 0,34 brez Mkz) je regija enaka kot pri povprečnih slovenskih e-nakupovalcih oz. respondentih Ris-a (v deležu 0,34), toda precej višja kot naklučni izpis iz baze Mkz (delež 0,23). Pri respondentih ankete s kartico je tudi nadpovprečen delež poštnih številk Gorenjske (pošta 4000+, delež 0,23) in je precej višji kot pri slovenskih e-nakupovalcih ankete Ris (delež 0,12). Po drugi strani odstopajo tudi respondenti ankete s kartico z nizkim deležem poštnih številk vzhodno Štajerske regije (pošta 2000+; delež 0,14), ki je za 5 odstotkov nižji od deležev respondentov Ris in naključno izbranih imetnikov kartice. Očitno Merkurjeva e-prodajalna najmočneje mobilizira porabnike iz Gorenjske na račun vzhodno Štajerske regije, kar dokazuje tudi delež nakupov v e-prodajalni (Mramor 2005, 34).
4. Izobrazba

Primerjava izobrazbene strukture, kot tudi zaposlenosti in e-nakupovanja, je bila mogoča le med anketiranci ankete (A_{mkz}, A_{mkz}^{\text{oc}}) in izsledki nacionalne raziskave Ris (R_{ris}). Vsii trije vzorci (s štirimi frekvenčni razredi: osnovna šola ali manj, poklicna šola, srednja šola, višja ali visoka šola in več) so si bili med seboj značilno različni. Iz frekvenčnih distribucij je tudi videti, da je v raziskavi Ris precej večji delež respondentov s poklicno izobrazbo (delež 0,26) kot pri obeh vzorcih ankete (deleža A_{mkz}=0,08 in A_{mkz}^{\text{oc}}=0,06), pri respondentih ankete s kartico pa ima precej višji delež univerzitetna izobrazba kot pri povprečnem e-nakupovalcu v Sloveniji (A_{mkz}=0,43, R_{ris}=0,31).

<table>
<thead>
<tr>
<th>TABELA 11: HI-KVADRAT MED VZORCI ZA IZOBRAZBO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{mkz}</td>
</tr>
<tr>
<td>45,13</td>
</tr>
</tbody>
</table>

Opombe: Krepko označene vrednosti pomenijo značilno različno frekvenčno porazdelitev v vzorcih. Kritične vrednosti Hi-kvadrat za značilno različna vzorca, pri df=1 stopnje stopinj prostosti enostransko so: \(\alpha=0,05: \chi^2=2,71 \), \(\alpha=0,025: \chi^2=3,84 \) in \(\alpha=0,005: \chi^2=6,64 \).

Simboli: A_{mkz} - respondenti ankete z vpisano številko Mkz, A_{mkz}^{\text{oc}} - respondenti ankete brez vpisane številke Mkz, R_{ris} - respondenti raziskave RIS.

5. Zaposlenost

Primerjava po zaposlenosti je pokazala, da so vsi trije vzorci (po poenotenih štirih frekvenčnih razredih: učenci ali dijaki ali vajenci, študenti, zaposleni in neaktivni) med seboj značilno različni. Frekvence kažejo očitno večjo udeležbo študentov, učencev, dijakov in vajencev v raziskavi Ris (R_{ris}=0,46) kot pri respondentih z vpisano številko kartice (A_{mkz}=0,05, A_{mkz}^{\text{oc}}=0,21). Nasprotno pa pri Merkurjevi anketi izstopajo zaposleni (A_{mkz}=88\%, R_{ris}=58\%). Očitno je velik del slovenskih e-nakupovalcev tudi med mlado populacijo, ki pa so v manjšini imetniki Merkurjeve kartice, vendar dosegljivi po e-kanalu.

<table>
<thead>
<tr>
<th>TABELA 12: HI-KVADRAT MED VZORCI ZA ZAPOSLENOST</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{mkz}</td>
</tr>
<tr>
<td>127,22</td>
</tr>
</tbody>
</table>

Opombe: Krepko označene vrednosti pomenijo značilno različno frekvenčno porazdelitev v vzorcih. Kritične vrednosti Hi-kvadrat za značilno različna vzorca, pri df=1 stopnje stopinj prostosti enostransko so: \(\alpha=0,05: \chi^2=2,71 \), \(\alpha=0,025: \chi^2=3,84 \) in \(\alpha=0,005: \chi^2=6,64 \).

Simboli: A_{mkz} - respondenti ankete z vpisano številko Mkz, A_{mkz}^{\text{oc}} - respondenti ankete brez vpisane številke Mkz, R_{ris} - respondenti raziskave RIS.

6. E-nakupovanje

Raziskava Ris je temeljila na respondentih (R_{ris}), ki so v preteklem letu opravili vsaj en nakup po internetu, zato smo tudi v primeru Merkurjevih anketirancev (A_{mkz} in A_{mkz}^{\text{oc}}) upoštevali enak kriterij (trije frekvenčni razredi števila e-nakupov: 1, 2, 3 in več e-nakupov ter pet frekvenčnih razredov vrednosti e-nakupov: do 10.000 SIT, od 10.000 do 20.000
SIT, od 20.000 do 50.000 SIT, od 50.000 do 100.000 SIT in več kot 100.000 SIT). Medtem ko so vsi trije vzorci po razredih števila e-nakupov (Ie) med seboj značilno različni, pa pri vrednosti e-nakupov (Ve) oba vzorca respondentov spletne ankete (A_{mkz} in A_{-mkz}) nista različna od respondentov raziskave Ris, čeprav sta med seboj različna. Medtem ko ima pri številu nakupov raziskava Ris nekoliko več "težkih" kupcev (tri in več e-nakupov v 12 mesecih, deleži $R_{ris}=0,65$, $A_{mkz}=0,6$, $A_{-mkz}=0,51$), pa so si vzorci po vrednosti e-nakupov podobni. RIS pravi, da se je letna vrednost e-nakupov povečala v Sloveniji na 73.000 SIT (mediana 50.000 SIT), s povprečno petimi nakupi na e-nakupovalca. Srednje vrednosti respondentov Merkurjeve ankete (velja tako za A_{mkz} kot za A_{-mkz}), ki so v 12 mesecih opravili vsaj en e-nakup (tisti, ki niso opravili nobenega, so bili predhodno izločeni), pa imajo glede na spletno anketo mediano razreda treh e-nakupov v 12 mesecih ter modus razreda 4 in več e-nakupov. Glede vrednosti sta mediana in modus v razredu od 20.000 do 50.000 SIT. Očitno gre pri Merkurju resnično, predvsem glede števil e-nakupov, za nekoliko manj "težke" e-kupce, kot so povprečni slovenski e-nakupovalci po raziskavi RIS.

Tabela 13: Hi-kvadrat med vzorci za število in vrednost e-nakupov

<table>
<thead>
<tr>
<th></th>
<th>A_{mkz}</th>
<th>R_{ris}</th>
<th>A_{mkz}</th>
<th>R_{ris}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{mkz}</td>
<td>388,69</td>
<td>104,30</td>
<td>20,82</td>
<td>2,96</td>
</tr>
<tr>
<td>A_{-mkz}</td>
<td>153,09</td>
<td></td>
<td>13,73</td>
<td></td>
</tr>
</tbody>
</table>

Simboli: A_{mkz} - respondenti ankete z vpisano številko Mkz, A_{-mkz} - respondenti ankete brez vpisane številke Mkz, R_{ris} - respondenti raziskave Ris.

Opombe: Krepo označene vrednosti pomenijo značilno različno frekvenčno porazdelitev in vzorcih. Kritične vrednosti Hi-kvadrat za značilno različno vzorca, pri df=1 stopnje stopinj prostosti enostanskno so: $\alpha=0,05$: $\chi^2=2,71$, $\alpha=0,025$: $\chi^2=3,84$ in $\alpha=0,005$: $\chi^2=6,64$.

7. Nakupovanje v Merkurju

Povprečni "internetni" respondent in imetnik Mkz (A_{mkz}) je opravil v Merkurju v 12 mesecih (od 15. junija 2004 do 15. junija 2005) skupaj 35,5 nakupa, povprečni Merkurjev kupec (B_{mzena}^{mzena}) pa 21,5 nakupa. Podobna je tudi razlika v zapravljeni vrednosti: povprečni Merkurjev respondent in imetnik kartice (A_{mkz}) je v Merkurju zapravil v enem letu 126.323 SIT, povprečen kupec in imetnik kartice (B_{mzena}^{mzena}) pa 76.609 SIT. Pregled centilov števila nakupov pokaže, da skoraj četrta in enajtina anketirancev (A_{mkz}) spada med desetino najbolj pogostih kupcev v Merkurju (21 odstotkov po vrednosti), 40 odstotkov internetnih respondentov pa med 20 odstotkov najpogoštejših kupcev v Merkurju (in 36 odstotkov po vrednosti nakupov), 70 odstotkov internetnih anketirancev pa spada v zgornjo polovico Merkurjevih kupcev (68 odstotkov po vrednosti). Več kot očitno je, da e-prodajalna komunicira s segmentom najboljših Merkurjevih kupcev.

[^35]: Razmerje med e-nakupovalci in ne-e-nakupovalci (e-kupci/ne-e-kupci) je: $A_{mkz}=1$, $A_{-mkz}=1,45$, $R_{ris}=0,2$. Največji delež e-nakupovalcev se je torej pojavil med Merkurjevimi anketiranci brez Mkz.
4 SKLEP

V empirični raziskavi smo preverjali osem zastavljene tlocvete in najprej zavrnili povezanost pogoste uporabe interneta s pogosteješim obiskom e-prodajalnih nakupov v Merkurju. To pomeni, da pogostost uporabe interneta ne vpliva na pogostejšo multikanalno

Pozitivno e-nakupno izkušnjo pa oblikuje, poleg izvedbe nakupa in prevzema blaga s spremljajočimi storitvami, tudi zaznana prepričljivost ponudbe, ki pogojuje ugotovljeno korist nakupa. Zaznane koristi e-nakupovanja pa očitno ustvarjajo prepad med obiski e-prodajalni in opravljenimi nakupi po internetu.

Vpliv Merkurjevega e-komuniciranja oz. okolja e-prodajalne v najširšem smislu smo dokazali s povezavo med pogostostjo obiskov e-prodajalne pred nakupi in večjim številom nakupov v Merkurju, kar je dokaz multikanalnega nakupovanja. In če je multikanalno nakupovanje porabnikov odgovor na dilemo o razliki med številnimi obiski in piščal številom nakupov v e-prodajalni, potem je odgovor na drugo dilemo raziskave o vprašljivem vplivu okolja e-prodajalne na vedenje porabnikov takšen, da e-komuniciranje povečuje tako vrednost, kakor število nakupov v Merkurju. Z nakupi so namreč najmočneje povezani neposredni in drugi prihodi v e-prodajano (v 14 dneh pred nakupom), zato gre očitno za bolj prisotno načrtovano nakupovanje in s tem povezano prednakupno procesiranje informacij kot za impulzivno nakupovanje. Zato imajo v primerjavi z neposredno e-pošto in pasicami neposredni prihodi in prihodi iz vsebinsko sorodnih spletnih strani močnejši vpliv. Pomembno je tudi, da najmočneje vpliva linearna kombinacija vseh virov obiskov (e-pošta, pasice in drugo) na število nakupov v Merkurju, kar kaže na največjo učinkovitost uporabe celotnega e-komunikacijskega spleta.

Če pogostost obiskovanja e-prodajalne povečuje število nakupov v Merkurju, pa tega ne moremo trditi za večje število nakupov v e-prodajalni, saj je povezanost s številom opravljenih e-nakupov zelo šibka. Nakupovanje po internetu se z vsebinskega vidika v primeru Merkurja težko primerja s klasičnim nakupovanjem, saj ponudba e-prodajalne obsega manj kot 10 odstotkov ponudbe večjega trgovskega centra, zato se postavlja vprašanje, ali lahko porabniki sploh zaupajo v izbiro Merkurjeve e-prodajalne. Na takšno razmišljanje opozarja tudi šibka negativna povezava med številom nakupov v Merkurju in zadovoljstvom s ponudbo izdelkov na internetu. Porabniki z večjim številom nakupov v Merkurju so verjetno manj zadovoljni s ponudbo e-prodajalne zaradi globlje vpletenosti v prednakupno iskanje informacij. Zato imajo tudi višja pričakovana o ponudbi izdelkov na internetu in želenih informacijah (medsebojna korelacija med zadovoljstvom s ponudbo in njeno predstavitvijo je srednje močna). Te ugotovitve potrjujejo priporočila drugih avtorjev.
o nujni integraciji in sinhronizaciji prodajnih kanalov (Görsch 2003). V prihodnosti bi kazalo preveriti, koliko novih e-kupcev prinese bolj atraktivna ponudba izdelkov in prilagojenih storitev na internetu, kar bi lahko podrobneje razložilo zakonitost menjave nakupnega kanala in proces spreminjanja nakupovalnih navad. V ta namen bi morali testirati različne kombinacije dostavnih in cenovnih pogojev, povezanih z različnimi vrstami izdelkov in stili ter orodji komuniciranja.

Število nakupov v e-prodajalni je bilo šibko povezano z zadovoljstvom z dostavo, cenami in plačilnimi pogoji. To je verjetno posledica nabora izdelkov, ki se osvežuje z izdelki akcijskih letakov. Edina dodatna ugodnost e-prodajalne je brezplačna dostava pri nakupu nad 10.000 SIT, saj se dostava v klasičnih Merkurjevih prodajalnah zaračuna. Kljub temu gre za šibko zaznano korist, saj 80 odstotkov kupcev e-prodajalne predstavljajo enkratni kupci (Marc 2003).

Socio-demografski dejavniki (spol, izobrazba, starost, zaposlenost, regija) ne vplivajo na e-nakupovanje ali nakupovanje v Merkurju, vendar so nekateri dejavniki šibko povezani z elementi designa in ponudbe ter predstavitve izdelkov. Očitno gre za vlogo mediacijskih spremenljivk in ne temeljnih determinant vedenja, podobno kot so ugotovili pri poenoteni teoriji sprejetja in uporabe tehnologije. Izkazalo se je tudi, da so respondenti spletne ankete z Merkurjevo kartico zaupali opravili v 12 mesecih 65 odstotkov več nakupov kot povprečni imetniki Mkz (razmerje povprečij 35,5/21,5 nakupov), prav takšen odstotek pa je tudi pri povprečni vsoti zapravljenega denarja (razmerje 126.323/76.609 SIT). Četrtna respondentov spletne ankete spada v skupino 10 odstotkov najboljših kupcev Merkurja po številu in vrednosti nakupov, 70 odstotkov pa v zgornjo polovico Merkurjevih kupcev, kar kaže na moč interneta pri doseganju kvalitetnih porabnikov. Respondenti spletne ankete in

Pri merjenju lastnosti respondentov smo opazili tudi različne ocene spremenljivk, za katere smo pridobili podatke iz anketnega vprašalnika in hkrati z izpisom iz baze imetnikov kartice. Tako oblikovana vzorca istih respondentov se razlikujeta po starostnih razredih, regijski pripadnosti in očitno tudi po spolu. Zaradi neusklajenosti med viroma vsekakor priporočamo podrobnejši pregled podatkov o imetnikih kartic v Merkurjevi bazi. Pri odgovorih respondentov o lastnih nakupih so opazne tudi značilno različne in precenjene ocene števila in vrednosti lastnih e-nakupov v 12 mesecih. Vse to opravičuje dvome behavioristov o primernosti raziskovanja stališč, posebej v okolju, kot je internet, kjer je celotno vedenje zapisano v dnevnih vpisih (Henderson 2003). Dodatno se je kot najvplivnejši dejavnik e-nakupovanja pokazala izkušenost porabnika v nakupovanju po internetu, kar z vidika behaviorizma pomeni stopnjo predhodnega ojačevanja v e-nakupovanju.

V kognitivnem pristopu raziskovanja pa bi lahko prilagodili in dodatno preverili najpogostešje teorije adopcije tehnologije, kot sta TAM ali združena teorija sprejetja informacijske tehnologije (UTAUT). UTAUT na primer vsebuje dejavnik prostovoljnosti, kar je posledica raziskovanja delovnega okolja organizacij in ne raziskav nakupovalnega okolja porabnikov v multiokviralnih okviri. Mi smo v našem primeru ugotovili medsebojno povezane dejavnike dostopa do informacij in ponudbe ter predstavitve izdelkov, ki se lahko interpretirajo kot enovit zaznavni konstrukt. Kar je pravzaprav tudi smiselno, saj Merkurjeva e-prodajalna službi najpogosteje pregledu ponudbe, zaradi pomanjkanja e-dražljajev pa porabniki druge večje neposredne koristi verjetno ne zaznajo, zato se...

Naša razmišljanja lahko ob številnih ugotovitvah sklenemo z mislio, da e-komuniciranje dokazano vpliva na porabnike v okolju multikanalnega nakupovanja. Veliko je še tudi prostora v raziskovalnih pristopih vedenja porabnikov, posebej v metodah e-behaviorizma, ki je še v povojnem in se zdi kot izjemno privlačno eksperimentalno orodje multikanalnih tržnikov. Ključno je vseh internetnih porabnikov najbolj vplivno pa je očitno dejstvo, da so tržne strategije podjetij, ki nagovarjajo porabnike in hkrati ne vključujejo aktivnega e-marketinškega spleta, pogosto hudo pomanjkljive. Zato mora biti e-prodajalna dinamično marketiško orodje, ki obvladuje cenovno politiko in dobro diferencira izdelke ali storitve, jih opazno komunicira, predvsem pa zagotovi ažurno dostavo ter tako nenahno povečuje konkurenčno prednost podjetja v multikanalnem okolju.
SEZNAM VIROV

PRILOGE

Priloga 1: Teoretični pristopi

SLIKA 25: TAM2 (MODEL SPREJETJA TEHNOLOGIJE)

Opombe: Venkatesh in Davis sta TAM-u pripela dodatke, ki vplivajo predvsem na zaznano uporabnost sistema, in oblikovala TAM2; vsi dodani dejavniki so zaznavni.

SLIKA 26: UTAUT (POENOTENA TEORIJA SPREJETJA IN UPORABE TEHNOLOGIJE)

SLIKA 27: TEORIJA DIFUZIJE INOVACIJE

Opombe: Ko opisujemo proces difuzije inovacij govorimo običajno o t.i. S-krivulji (ang. S-shape), možne pa so seveda tudi druge oblike (npr. difuzija novic – J-krivulja itd...). % adopcije – delež ljudi, ki so sprejeli inovacijo, vzlet – območje vzleta krivulje oz. območje, kjer krivulja sprejema inovacije in postane strm rastoča (člani določenega družbenega sistema vedno hitreje sprejemajo inovacijo).

SLIKA 28: PORAZDELITEV PORABNIKOV V PROCESU DIFUZIJE

SLIKA 30: TEORIJA PRIČAKOVANJ IN POTRDTIVE

Opombe: Ključni odnosi v teoriji pričakovanj in potrditve (ang. Expectation-Confirmation Theory, ECT), kjer \(t_1 \) pomenijo spremenljivke pred porabo oz. uporabo, \(t_2 \) pa po uporabi informacijskega sistema (IS).
Vir: Bhattacherjee 2003, 353.
Priloga 2: Izvor spremenljivk

TABELA 14: POTREBNE SPREMLJIVKE IN NJIHOVI IZVORI

<table>
<thead>
<tr>
<th>Hipoteze</th>
<th>Opis spremenljivke</th>
<th>Oznaka</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 + H8</td>
<td>Pogostost uporabe interneta</td>
<td>Ui</td>
</tr>
<tr>
<td>H2 + H8</td>
<td>Izkusenost v e-nakupovanju</td>
<td>Ie</td>
</tr>
<tr>
<td>H2 + H4 +</td>
<td>Stevilo nakupov v e-prodajalni (trimesečje, letno). Na nekaterih mestih smo testno preverjali tudi vrednost e-nakupov.</td>
<td>Nep</td>
</tr>
<tr>
<td>H5 + H6 +</td>
<td>Vrednost nakupov v Merkurju (trimesečje, letno). Na nekaterih mestih smo testno preverjali tudi število nakupov.</td>
<td>Vm</td>
</tr>
<tr>
<td>H7 + H8, demografiya</td>
<td>Obisk e-prodajalne oz. intenzivnost komunikacije z e-okoljem v trimesečju (Število obiskov iz različnih virov skupaj, stevilo obiskov iz e-novic ali obisk iz drugih virov).</td>
<td>Onm</td>
</tr>
<tr>
<td>H4 + H8</td>
<td>Zadovoljstvo s ponudbo izdelkov e-prodajalne</td>
<td>Zpon</td>
</tr>
<tr>
<td>H5 + H8</td>
<td>Zadovoljstvo z dostavo e-prodajalne</td>
<td>Zdo_i</td>
</tr>
<tr>
<td>H6 + H8</td>
<td>Zadovoljstvo s cenami izdelkov v e-prodajalni</td>
<td>Zce_i</td>
</tr>
<tr>
<td>H6 + H8</td>
<td>Zadovoljstvo s plačilnimi pogoji v e-prodajalni</td>
<td>Zplac</td>
</tr>
<tr>
<td>H7 + H8</td>
<td>Zaznana preglednost e-prodajalne</td>
<td>EPpreg</td>
</tr>
<tr>
<td>H7 + H8</td>
<td>Enostavnost brskanja v e-prodajalni</td>
<td>EPbrsk</td>
</tr>
<tr>
<td>H7 + H8</td>
<td>Izdelki se hitro najdejo v e-prodajalni</td>
<td>EPisk</td>
</tr>
<tr>
<td>H8</td>
<td>Internetne lastnosti porabnika (endogena spremenljivka)</td>
<td>Li</td>
</tr>
<tr>
<td>H8</td>
<td>Privlačnost ponudbe (zadovoljstvo, endogena spremenljivka)</td>
<td>Zp</td>
</tr>
<tr>
<td>H8</td>
<td>Spletni vmesnik (zadovoljstvo, endogena spremenljivka)</td>
<td>Zep</td>
</tr>
<tr>
<td>H8</td>
<td>Obisk e-prodajalne (endogene spremenljivka)</td>
<td>Oep</td>
</tr>
</tbody>
</table>

VIRI PODATKOV

<table>
<thead>
<tr>
<th>Anketa</th>
<th>Dnevnik spletnega strežnika</th>
<th>Mzk baza nakupov</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

demografiya

<p>| Spol | x | x |</p>
<table>
<thead>
<tr>
<th>Demografija</th>
<th>Izobrazba</th>
<th>Izob</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demografija</td>
<td>Starost</td>
<td>Star</td>
<td>x</td>
</tr>
<tr>
<td>Demografija</td>
<td>Zaposlenost</td>
<td>Zpsl</td>
<td>x</td>
</tr>
<tr>
<td>Demografija</td>
<td>Regija po poštnih številkah</td>
<td>Pošt</td>
<td>x</td>
</tr>
</tbody>
</table>

Priloga 3: Predstavitev spremenljivk

Ui - pogostost uporabe interneta; podatke smo pridobili z anketo (http://nakup.merkur.si/anketa/).

Ie - izkušenost v e-nakupovanju; podatke smo pridobili z anketo (http://nakup.merkur.si/anketa/).

Nep - število nakupov v e-prodajalni smo dobili iz izpisa dnevnika spletnega strežnika po e-poštnem naslovu in v anketi vpisani Merkurjevi kartici zaupanja (Mkz). Številko Mkz smo pridobili z vprašanjem v anketi (http://nakup.merkur.si/anketa/). Elektronski naslov respondenta se je zapisal ob vpisovanju ankete, saj smo vprašalnik pošiljali na posamezne e-naslove in vsakega respondentu označili s številko, tako da smo ob odgovorih tudi vedeli, iz katere številke e-pisma je prišel respondent, kar nam je razkril tudi njihov e-naslov.

Vep - vrednost nakupov v e-prodajalni; podobno kot Nep.

Vm - vrednost nakupov v Merkurju smo dobili iz izpisa prometa respondentov iz baze Merkurjevih kartičarjev po številki Mkz. Številko Mkz smo pridobili z vprašanjem v anketi.

Nm - število nakupov v Merkurju; podobno kot Vm.

obdobje pač samo prihode iz posameznega izvora: iz pasic (Onm_p_tri), e-novic (Onm_en_tri) in ostali prihodi - preko drugih virov oz. neposredni vpisi (Onm_o_tri). Vsota vseh treh podvirov je seveda enaka številu vseh prihodov (Onm_tri = Onm_p_tri + Onm_en_tri + Onm_o_tri).

Li, Zp, Zep, Oep - (endogene spremljivke): internetne lastnosti porabnika (Li), zadovoljstvo s ponudbo (Zp), zadovoljstvo s spletnim vmesnikom (Zep), intenzivnost obiskovanja e-prodajalne (Oep).
Priloga 4: Dileme in omejitve pri določanju spremenljivk

V nekatere spremenljivke smo vključili tudi časovni interval, zato smo morali pred preračunavanjem spremenljivk določiti čas beleženja vseh dogodkov, ki so predstavljali edinstven podatek (npr. obisk prodajalne pred nakupom v Merkurju, Onm). Odločili smo se, da bomo za nakupovanje tehišelega blaga predvidevali 14 dnevi nakupovalni proces, zato so v spremenljivko Onm spadali vsi obiski e-prodajalne respondenta v 14 dneh pred njegovim nakupom v Merkurju. Če je respondent opravil več nakupov, smo število obiskov e-prodajalne delili s številom nakupov. Gotovo je časovna dolžina nakupnega procesa odvisna od mnogih dejavnikov (situacija porabnika, čas, tip izdelka) in bi jo bilo potrebno posebej raziskati, verjetno celo z eksperimentom, vendar je dilema presegala obseg naloge.

Naslednji operativni problem se je pojavil ob kombiniranju različnih virov podatkov, na primer pri Onm dnevnika spletnega strežnika in baze Merkurjeve kartice zaupanja (Mkz). Za kreiranje Onm smo morali namreč zajeti datum nakupa v bazi Mkz in prešteti število obiskov e-prodajalne pred nakupom po dnevniku spletnega strežnika.37 Če je bilo več zabeleženih nakupov po kartici Mkz, smo izračunali povprečje respondenta.

Pri merjenju se je večja omejitev raziskave nanašala na Merkurjevo kartico zaupanja, saj se nanjo zabeleži povprečno le približno 70 odstotkov prometa, kar pomeni, da vsak nakup nanjo ni zabeležen (Moškotelec 2005). Vendar so verjetno kupci, ki večkrat kupujejo v Merkurju, pogosteje zabeležili nakupe na kartico, saj tako pridobijo dobropis programa lojalnosti.

Ob tematiki piškotkov je potrebno tudi dodati, da so lahko spletne obiskovalci vplivali na svoje sedi v e-prodajalni, saj je beleženje piškotkov odvisno od posameznega uporabnika, ki lahko blokira piškotke na svojem računalniku. Pojavila se je tudi druga večja ovoja glede piškotkov, saj pomeni piškotek enolično predstavljanje spletnega brskalnika in računalnika, oseba pa lahko dostopa do e-prodajalne z različnih računalnikov in ima več piškotkov, čeprav gre na prvi pogled za več oseb. In obratno, več oseb lahko uporablja en računalnik (npr. na javnem mestu), na strežniku e-prodajalne pa se obiskovalci predstavljajo z enim piškotkom. Kakorkoli, mi smo predvidevali, da en piškotek predstavlja enega obiskovalca, po drugi strani pa smo pri analizi upoštevali le tiste respondente, ki so v anketo vpisali Merkurjevo kartico zaupanja, na katero so dostopili z e-pošte, zato so verjetno vpisovali osebne podatke z relativno varnega mesta.

37 V dnevniku spletnega strežnika so zapisane vse aktivnosti uporabnikov e-prodajalne. Vse aktivnosti posameznih uporabnikov združimo v seje, ki opisujejo en obisk spletnega mesta. Obiskovalce lahko ob obisku tudi prepoznamo, saj nosijo s seboj piškotek (t.i. cookie) in če le-ta ni blokiran, lahko predstavljajo identifikacijski podatek o računalniku (Remškar 2002, 6-8).
Priloga 5: Podatkovni model

Slika 31: Osnovni podatkovni model raziskave

![Podatkovni model raziskave](image)

Priloga 6: Anketni vprašalnik

Anketa o nakupih po internetu in Merkurjevi e-prodajalni Nakup.merkur.si

1. Kako pogosto uporabljate internet? (večkrat na dan, enkrat na dan, enkrat na teden, enkrat na mesec)

2. Koliko nakupov ste opravili v obdobju zadnjih 12-ih mesecev po internetu? (0, 1, 2, 3, 4 in več nakupov)

3. Kolikšna je bila v obdobju zadnjih 12-ih mesecev skupna vrednost vseh nakupov po internetu? (do 10.000 SIT, od 10.000 do 20.000 SIT, od 20.000 do 50.000 SIT, od 50.000 do 100.000 SIT, več kot 100.000 SIT, nisem nakupoval po internetu)

5. Koliko nakupov ste v obdobju zadnjih 12-ih mesecev opravili v Merkurjevi e-prodajalni Nakup.merkur.si? (0, 1, 2, 3, 4 in več nakupov)

6. Kolikšna je bila v obdobju zadnjih 12-ih mesecev skupna vrednost vseh nakupov v Merkurjevi e-prodajalni? (do 10.000 SIT, od 10.000 do 20.000 SIT, od 20.000 do 50.000 SIT, od 50.000 do 100.000 SIT, več kot 100.000 SIT, nič nisem kupil v Merkurjevi e-prodajalni)

Prosimo vas, da označite vaše strinjanje z naslednjimi trditvami:

7. Merkurjeva e-prodajalna je pregledna. (se sploh ne strinjam, se ne strinjam, se delno strinjam, se strinjam, zelo se strinjam)

8. Brskanje po Merkurjevi e-prodajalni je enostavno. (se sploh ne strinjam, se ne strinjam, se delno strinjam, se strinjam, zelo se strinjam)

9. Iskane izdelke je v Merkurjevi e-prodajalni mogoče hitro najti. (se sploh ne strinjam, se ne strinjam, se delno strinjam, se strinjam, zelo se strinjam)
10. Kako ste bili ob obisku Merkurjeve e-prodajalne zadovoljni ...
 ... s ponudbo izdelkov? (zele nezadovoljen, nezadovoljen, niti nezadovoljen niti
 zadovoljen, zadovoljen, zelo zadovoljen, ne vem)
 ... s slikovno-opisno predstavitvijo ponujenih izdelkov? (zele nezadovoljen, nezadovoljen,
 niti nezadovoljen niti zadovoljen, zadovoljen, zelo zadovoljen, ne vem)
 ... z dostavo izdelkov? (zele nezadovoljen, nezadovoljen, niti nezadovoljen niti zadovoljen,
 zadovoljen, zelo zadovoljen, ne vem)
 ... s cenami izdelkov? (zele nezadovoljen, nezadovoljen, niti nezadovoljen niti zadovoljen,
 zadovoljen, zelo zadovoljen, ne vem)
 ... z možnostjo plačila? (zele nezadovoljen, nezadovoljen, niti nezadovoljen niti
 zadovoljen, zadovoljen, zelo zadovoljen, ne vem)

11. Bi želeli še kaj spremeniti v Merkurjev spletni trgovini? Vpišite vaše želje:..........

12. Vpišite svoje podatke:
 Spol (moški, ženski)
 Izobrazba (osnovna šola (dokončana OŠ), poklicna šola, srednja šola, višja ali visoka
 šola, magisterij ali doktorat)
 Starost (od 12 do 19 let, od 20 do 29 let, od 30 do 49 let, od 50 do 65 let, nad 66 let)
 Zaposlenost (zaposlen pri delodajalcu, lastnik podjetja, samostojni podjetnik,
 samozaposleni strokovnjak, svobodni poklici, pogodbeno delo, nezaposlen, upokojenec,
 osnovnošolec, srednješolec, študent, drugo - gospodinja, služkinja, negovalka na domu ...)
 Poštna številka (od 1000 do 1999, od 2000 do 2999, od 3000 do 3999, od 4000 do 4999,
 od 5000 do 5999, od 6000 do 6999, od 8000 do 8999, od 9000 do 9999)

 Želite biti obveščeni o izsledkih raziskave?(da, ne)
 Vaš e-naslov za obvestilo o morebitni nagradi ali izsledku raziskave:

Anketni vprašalnik je dostopen tudi na naslovu: http://nakup.merkur.si/anketa/.
Priloga 7: Analiza dnevnika spletnega strežnika

Sledi obiskovalcev

SLIKA 32: UREJEN PRIKAZ ZAPISA V DNEVNIKU SPLETNEGA STREŽNIKA

<table>
<thead>
<tr>
<th>Fields: date time s-ip cs-method cs-uri-stem cs-uri-query s-port cs-username c-ip cs(User-Agent) cs(Cookie) cs(Referer) sc-status sc-substatus sc-win32-status</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005-03-15 12:14:33</td>
</tr>
<tr>
<td>2005-03-15 12:14:34</td>
</tr>
<tr>
<td>2005-03-15 12:14:34</td>
</tr>
<tr>
<td>2005-03-15 12:14:34</td>
</tr>
</tbody>
</table>

Opombe: Za našo raziskavo so bili zanimivi predvsem naslednji podatki dnevnika spletnega strežnika: čas (time) v formatu [yyyy-mm-dd hh:mm:ss], zahteva (request) elementa [GET *], piškotek (coockie), ki je bil veljaven v seji [VisitorId=“*”] in vir [Refererrer – brskalnik v tem polju sporoči strežniku naslov strani, kateri je prišla zahteva, recimo iz pasice ali e-novice].

Sledi obiskovalcev smo filtrirali in jih izvozili v MS Access, kjer smo naredili (SQL) poizvedbo respondentov spletne ankete po piškotkih in prešteli število prihodov respondentov za vsak posamezen vir. Podobno smo pridobili tudi število nakupov v e-prodajalni, kjer pa smo respondente "polovili" s pomočjo e-poštnega naslova in številke Merkurjeve kartice zaupanja.
Priloga 8: Hipoteza H1

Tabela 15: Prikaz spremenljivk UI in ONM

<table>
<thead>
<tr>
<th>Število vrednosti (N)</th>
<th>1031</th>
<th>698</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manjkajoče vrednosti</td>
<td>0</td>
<td>333</td>
</tr>
<tr>
<td>Aritmetična sredina</td>
<td>3,759</td>
<td>4,842</td>
</tr>
<tr>
<td>St. napaka arit. sredine</td>
<td>0,017</td>
<td>0,349</td>
</tr>
<tr>
<td>Mediana</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Modus</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Standardna devijacija</td>
<td>0,544</td>
<td>9,226</td>
</tr>
<tr>
<td>Varianca</td>
<td>0,296</td>
<td>85,126</td>
</tr>
<tr>
<td>Rang</td>
<td>3</td>
<td>90</td>
</tr>
<tr>
<td>Minimum</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Maksimum</td>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>25. centil</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>50. centil</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>75. centil</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>90. centil</td>
<td>4</td>
<td>13</td>
</tr>
</tbody>
</table>

Opombe: Pri štetju prihodov v trimesečem opazovanem obdobju smo šteli le prihode pred nakupi, zato imajo tisti respondenti, ki niso opravili nakupa, zabeležene manjkajoče vrednosti (333 pri Onm).

Slika 33: Grafični prikaz porazdelitve UI in ONM

Opomba: Pri O_Nm je tudi vidno, da gre za večje število manjkajočih vrednosti 333 od 1031, kar pa je posledica števila nenakupovalcev v Merkurju v opazovanem obdobju med respondenti. Sklepamo lahko, da se Onm ne distribuira različno z manjkajočimi vrednostmi, saj ni logično, da bi pogostost uporabe interneta respondentena vplivala na nakupovanje v Merkurju v celoti (tako na internetu, kakor v klasičnih prodajalnah).
Priloga 9: Hipoteza H2

TABELA 16: PRIMERJAVA SPREMENLJIVK NEP IN NEP-S

<table>
<thead>
<tr>
<th>Število e-nakupov v 12 mesecih v Merkurju</th>
<th>Frekvence Nep-a</th>
<th>% Nep-a</th>
<th>Frekvence Nep-s</th>
<th>% Nep-s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>858</td>
<td>83,22</td>
<td>942</td>
<td>91,37</td>
</tr>
<tr>
<td>1</td>
<td>89</td>
<td>8,63</td>
<td>54</td>
<td>5,24</td>
</tr>
<tr>
<td>2</td>
<td>29</td>
<td>2,81</td>
<td>26</td>
<td>2,52</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>1,55</td>
<td>4</td>
<td>0,39</td>
</tr>
<tr>
<td>4 in več</td>
<td>39</td>
<td>3,78</td>
<td>5</td>
<td>0,48</td>
</tr>
<tr>
<td>Skupaj</td>
<td>1031</td>
<td>100</td>
<td>1031</td>
<td>100</td>
</tr>
</tbody>
</table>

TABELA 17: PRIMERJAVA SPREMENLJIVK VEP-A IN VEP-S

<table>
<thead>
<tr>
<th>Vrednost e-nakupov v 12 mesecih v Merkurju</th>
<th>Frekvence Vep-a</th>
<th>% Vep-a</th>
<th>Frekvence Vep-s</th>
<th>% Vep-s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>810</td>
<td>78,56</td>
<td>942</td>
<td>91,37</td>
</tr>
<tr>
<td>do 10.000 SIT</td>
<td>59</td>
<td>5,72</td>
<td>14</td>
<td>1,36</td>
</tr>
<tr>
<td>od 10.000 do 20.000 SIT</td>
<td>39</td>
<td>3,78</td>
<td>15</td>
<td>1,45</td>
</tr>
<tr>
<td>od 20.000 do 50.000 SIT</td>
<td>43</td>
<td>4,17</td>
<td>22</td>
<td>2,13</td>
</tr>
<tr>
<td>od 50.000 do 100.000 SIT</td>
<td>45</td>
<td>4,36</td>
<td>22</td>
<td>2,13</td>
</tr>
<tr>
<td>100.000 SIT in več</td>
<td>35</td>
<td>3,39</td>
<td>16</td>
<td>1,55</td>
</tr>
</tbody>
</table>

Opombe: Primerjamo podatke vrednosti e-nakupovanja iz spletne ankete (Vep-a, 4. vprašanje) in podatke iz spletnega strežnika (Vep-s), razvrščene v enake razrede.
TABELA 18: ŠTEVILO E-NAKUPOV PO INTERNETU V 12 MESECIH

<table>
<thead>
<tr>
<th>Število e-nakupov</th>
<th>Frekv.</th>
<th>%</th>
<th>Statistične ocene</th>
<th>Ie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>412</td>
<td>39,96</td>
<td>Arit. sredina</td>
<td>1,707</td>
</tr>
<tr>
<td>1</td>
<td>105</td>
<td>10,18</td>
<td>Mediana</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>143</td>
<td>13,87</td>
<td>Modus</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>115</td>
<td>11,15</td>
<td>S.E.</td>
<td>0,051</td>
</tr>
<tr>
<td>4 in več</td>
<td>256</td>
<td>24,83</td>
<td>Stand. odklon</td>
<td>1,650</td>
</tr>
<tr>
<td>Skupaj</td>
<td>1031</td>
<td>100</td>
<td>Varianca</td>
<td>2,722</td>
</tr>
</tbody>
</table>

Opombe: Podatke spremenljivke smo pridobili s pomočjo spletne ankete na naslovu http://nakup.merkur.si/anketa/.

TABELA 19: VREDNOST E-NAKUPOVANJA PO INTERNETU V 12 MESECIH

<table>
<thead>
<tr>
<th>Vrednost e-nakupov</th>
<th>Frekv.</th>
<th>%</th>
<th>Statistične ocene</th>
<th>Ve</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>394</td>
<td>38,22</td>
<td>Arit. sredina</td>
<td>2,011</td>
</tr>
<tr>
<td>do 10.000 SIT</td>
<td>71</td>
<td>6,89</td>
<td>Mediana</td>
<td>2</td>
</tr>
<tr>
<td>od 10.000 do 20.000 SIT</td>
<td>105</td>
<td>10,18</td>
<td>Modus</td>
<td>0</td>
</tr>
<tr>
<td>od 20.000 do 50.000 SIT</td>
<td>185</td>
<td>17,94</td>
<td>S.E.</td>
<td>0,058</td>
</tr>
<tr>
<td>od 50.000 do 100.000 SIT</td>
<td>143</td>
<td>13,87</td>
<td>Stand. odklon</td>
<td>1,870</td>
</tr>
<tr>
<td>100.000 SIT in več</td>
<td>133</td>
<td>12,90</td>
<td>Varianca</td>
<td>3,496</td>
</tr>
<tr>
<td>Skupaj</td>
<td>1031</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Opombe: Podatke spremenljivke smo pridobili s pomočjo spletne ankete na naslovu http://nakup.merkur.si/anketa/.

SLIKA 34: GRAFIČNI PRIKAZ PORAZDELITVE IE IN NEP-S

Opomba: Grafikona prikazuje frekvenčno porazdelitev števila opravljenih e-nakupov po internetu (Ie) in v Merkurjevi e-prodajalni (Nep-s) v 12 mesecih.
Priloga 10: Hipoteza H3

TABELA 20: POVEZANOST SPREMENLJIVK (PEARSONOV KOEFICIENT R)

<table>
<thead>
<tr>
<th></th>
<th>Nm_tri</th>
<th>Vnm_tri</th>
<th>Onm</th>
<th>Onm_en</th>
<th>Onm_p</th>
<th>Onm_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>Nm_tri</td>
<td>0,418</td>
<td>0,477</td>
<td>0,464</td>
<td>0,261</td>
<td>0,627</td>
</tr>
<tr>
<td>1-str.</td>
<td>Nm_tri</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Kov.</td>
<td>Nm_tri</td>
<td>163165,490</td>
<td>18,238</td>
<td>2,381</td>
<td>0,847</td>
<td>5,379</td>
</tr>
<tr>
<td>N</td>
<td>Nm_tri</td>
<td>1031</td>
<td>698</td>
<td>698</td>
<td>698</td>
<td>698</td>
</tr>
<tr>
<td>r</td>
<td>0,418</td>
<td>Vnm_tri</td>
<td>0,126</td>
<td>0,111</td>
<td>0,036</td>
<td>0,238</td>
</tr>
<tr>
<td>1-str.</td>
<td>0,000</td>
<td>Vnm_tri</td>
<td>0,000</td>
<td>0,002</td>
<td>0,174</td>
<td>0,000</td>
</tr>
<tr>
<td>Kov.</td>
<td>163165,490</td>
<td>Vnm_tri</td>
<td>136190,721</td>
<td>16176,496</td>
<td>3262,426</td>
<td>57663,392</td>
</tr>
<tr>
<td>N</td>
<td>1031</td>
<td>Vnm_tri</td>
<td>698</td>
<td>698</td>
<td>698</td>
<td>698</td>
</tr>
<tr>
<td>r</td>
<td>0,477</td>
<td>0,126</td>
<td>Onm</td>
<td>0,529</td>
<td>0,312</td>
<td>0,728</td>
</tr>
<tr>
<td>1-str.</td>
<td>0,000</td>
<td>0,000</td>
<td>Onm</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Kov.</td>
<td>18,238</td>
<td>136190,721</td>
<td>Onm</td>
<td>6,054</td>
<td>2,260</td>
<td>13,912</td>
</tr>
<tr>
<td>N</td>
<td>698</td>
<td>698</td>
<td>Onm</td>
<td>698</td>
<td>698</td>
<td>698</td>
</tr>
<tr>
<td>r</td>
<td>0,464</td>
<td>0,111</td>
<td>0,529</td>
<td>Onm_en</td>
<td>0,255</td>
<td>0,344</td>
</tr>
<tr>
<td>1-str.</td>
<td>0,000</td>
<td>0,002</td>
<td>0,000</td>
<td>Onm_en</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Kov.</td>
<td>2,381</td>
<td>16176,496</td>
<td>6,054</td>
<td>Onm_en</td>
<td>0,248</td>
<td>0,884</td>
</tr>
<tr>
<td>N</td>
<td>698</td>
<td>698</td>
<td>698</td>
<td>Onm_en</td>
<td>698</td>
<td>698</td>
</tr>
<tr>
<td>r</td>
<td>0,261</td>
<td>0,036</td>
<td>0,312</td>
<td>0,255</td>
<td>0,162</td>
<td></td>
</tr>
<tr>
<td>1-str.</td>
<td>0,000</td>
<td>0,174</td>
<td>0,000</td>
<td>0,000</td>
<td>0,264</td>
<td></td>
</tr>
<tr>
<td>Kov.</td>
<td>0,847</td>
<td>3262,426</td>
<td>2,260</td>
<td>0,248</td>
<td>0,264</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>698</td>
<td>698</td>
<td>698</td>
<td>698</td>
<td>698</td>
<td>698</td>
</tr>
</tbody>
</table>

Opombe: Značilne korelacije (enostransko ≤ 0,05) so izpisane s krepko pisavo.

TABELA 21: POVZETEK REGRESIJSKEGA MODELA VNM_TRI Z ONM_EN, ONM_P, ONM_O

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R²</th>
<th>Prilagojen R²</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,238</td>
<td>0,057</td>
<td>0,055</td>
<td>113754,8781</td>
</tr>
<tr>
<td>2</td>
<td>0,24</td>
<td>0,058</td>
<td>0,055</td>
<td>113777,1737</td>
</tr>
<tr>
<td>3</td>
<td>0,24</td>
<td>0,058</td>
<td>0,054</td>
<td>113852,8727</td>
</tr>
</tbody>
</table>

Opomba: Odvisna spremenljivka Vnm_tri.
Simboli:
1 - napovedovalci: (konstanta), povprečno število obiskov e-prodajalne iz drugih virov v 14 dneh pred nakupom v Merkurju (Onm_o),
2 - napovedovalci: (konstanta), povprečno število obiskov e-prodajalne iz drugih virov v 14 dneh pred nakupom v Merkurju (Onm_o), povprečno število obiskov e-prodajalne iz e-novic v 14 dneh pred nakupom v Merkurju (Onm_en),
3 - napovedovalci: (konstanta), povprečno število obiskov e-prodajalne iz pasic v 14 dneh pred nakupom v Merkurju (Onm_p).
TABELA 22: STATISTIČNE VREDNOSTI SPREMENLJIVK

<table>
<thead>
<tr>
<th></th>
<th>Onm</th>
<th>Onm_en</th>
<th>Onm_p</th>
<th>Onm_o</th>
<th>Nm_tri</th>
<th>Vnm_tri</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>698</td>
<td>698</td>
<td>698</td>
<td>698</td>
<td>1031</td>
<td>1031</td>
</tr>
<tr>
<td>Arit. sredina</td>
<td>4,842</td>
<td>0,788</td>
<td>0,258</td>
<td>1,150</td>
<td>2,854</td>
<td>34926,33</td>
</tr>
<tr>
<td>S.E.</td>
<td>0,349</td>
<td>0,047</td>
<td>0,030</td>
<td>0,078</td>
<td>0,123</td>
<td>3091,17</td>
</tr>
<tr>
<td>Mediana</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>7377,82</td>
</tr>
<tr>
<td>Modus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S.D.</td>
<td>9,226</td>
<td>1,241</td>
<td>0,785</td>
<td>2,070</td>
<td>3,936</td>
<td>99255,08</td>
</tr>
<tr>
<td>Varianca</td>
<td>85,126</td>
<td>1,539</td>
<td>0,616</td>
<td>4,286</td>
<td>15,494</td>
<td>9851571223,77</td>
</tr>
<tr>
<td>Rang</td>
<td>90</td>
<td>6</td>
<td>8</td>
<td>18</td>
<td>43</td>
<td>2400943,41</td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>Maksimum</td>
<td>90</td>
<td>6</td>
<td>8</td>
<td>18</td>
<td>43</td>
<td>2400943,41</td>
</tr>
<tr>
<td>25. centil</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>50. centil</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>7377,82</td>
</tr>
<tr>
<td>75. centil</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>34315,14</td>
</tr>
<tr>
<td>90. centil</td>
<td>13</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>94692,46</td>
</tr>
</tbody>
</table>

Opombe: Podatke spremenljivk smo pridobili s pomočjo poizvedb v bazi imetnikov Mko in dnevnika spletnega strežnika.

Simboli: Povprečno število obiskov e-prodajalne v 14 dneh pred nakupom v Merkurju (Onm), povprečno število obiskov e-prodajalne iz e-novic v 14 dneh pred nakupom v Merkurju (Onm_en), povprečno število obiskov e-prodajalne iz pasic v 14 dneh pred nakupom v Merkurju (Onm_p), povprečno število obiskov e-prodajalne iz drugih virov v 14 dneh pred nakupom v Merkurju (Onm_o), število nakupov v Merkurju od 15.3. do 16.6.2005 (Nm_tri), vrednost nakupov v Merkurju od 15.3. do 16.6.2005 (Vnm_tri).
Priloga 11: Hipoteza H4

TABELA 23: POVEZANOST SPREMLJIVK (PEARSONOV KOEFICIENTU R)

<table>
<thead>
<tr>
<th></th>
<th>Nep_tri</th>
<th>Vep_tri</th>
<th>Oep_en_tri</th>
<th>Oep_p_tri</th>
<th>Oep_o_tri</th>
<th>Oep_tri</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>Nep_tri</td>
<td>0,695</td>
<td>0,012</td>
<td>-0,002</td>
<td>0,074</td>
<td>0,059</td>
</tr>
<tr>
<td>1-str.</td>
<td>Nep_tri</td>
<td>0,005</td>
<td>0,350</td>
<td>0,471</td>
<td>0,025</td>
<td>0,029</td>
</tr>
<tr>
<td>Kov.</td>
<td>Nep_tri</td>
<td>2965,779</td>
<td>0,026</td>
<td>-0,001</td>
<td>0,190</td>
<td>0,215</td>
</tr>
<tr>
<td>N</td>
<td>Nep_tri</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
</tr>
</tbody>
</table>

Opombe: Podatke sprememljivk smo pridobili s pomočjo poizvedb v bazi imetnikov Mkz in dnevnika spletnega strežnika. Značilne korelacije (enostransko ≤ 0,05), so izpísane s krepko pisavo.

Simboli:
- 1-str. - enostransko,
- Kov. - kovarianca.

TABELA 24: POVZETEK REGRESIJSKEGA MODELA NEP_TRI Z OEP_O_TRI, OEP_EN_TRI, OEP_P_TRI

<table>
<thead>
<tr>
<th></th>
<th>Nep_tri</th>
<th>Vep_tri</th>
<th>Oep_en_tri</th>
<th>Oep_p_tri</th>
<th>Oep_o_tri</th>
<th>Oep_tri</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>Nep_tri</td>
<td>0,012</td>
<td>0,033</td>
<td>0,105</td>
<td>0,681</td>
<td></td>
</tr>
<tr>
<td>1-str.</td>
<td>Nep_tri</td>
<td>-0,007</td>
<td>0,033</td>
<td>0,105</td>
<td>0,681</td>
<td></td>
</tr>
<tr>
<td>Kov.</td>
<td>Nep_tri</td>
<td>-973,821</td>
<td>-234,525</td>
<td>7120,253</td>
<td>5911,907</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Nep_tri</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
</tr>
</tbody>
</table>

Simboli:
- 1 - napovedovalci: (konstanta), število obiskov e-prodajalne od 15.3. do 16.6.2005 iz drugih virov (Oep_o_tri).
- 3 - napovedovalci: (konstanta), število obiskov e-prodajalne od 15.3. do 16.6.2005 iz drugih virov (Oep_o_tri), število obiskov e-prodajalne od 15.3. do 16.6.2005 iz e-novic (Oep_en_tri), število obiskov e-prodajalne od 15.3 do 16.6.2005 iz pasic (Oep_p_tri).
TABELA 25: STATISTIČNE VREDNOSTI SPREMENLJIVK

<table>
<thead>
<tr>
<th></th>
<th>Nep_tri</th>
<th>Vep_tri</th>
<th>Oep_tri</th>
<th>Oep_en_tri</th>
<th>Oep_p_tri</th>
<th>Oep_o_tri</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
</tr>
<tr>
<td>Arit. sredina</td>
<td>0,053</td>
<td>2387,557</td>
<td>7,901</td>
<td>3,343</td>
<td>0,661</td>
<td>3,896</td>
</tr>
<tr>
<td>S.E.</td>
<td>0,008</td>
<td>517,119</td>
<td>0,442</td>
<td>0,266</td>
<td>0,072</td>
<td>0,309</td>
</tr>
<tr>
<td>Mediana</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Modus</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S.D.</td>
<td>0,257</td>
<td>16604,273</td>
<td>14,180</td>
<td>8,537</td>
<td>2,310</td>
<td>9,937</td>
</tr>
<tr>
<td>Varianca</td>
<td>0,066</td>
<td>275701895,658</td>
<td>201,062</td>
<td>72,880</td>
<td>5,337</td>
<td>98,742</td>
</tr>
<tr>
<td>Rang</td>
<td>2</td>
<td>297540,00</td>
<td>296</td>
<td>243</td>
<td>59</td>
<td>264</td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maksimum</td>
<td>2</td>
<td>297540,00</td>
<td>296</td>
<td>243</td>
<td>59</td>
<td>264</td>
</tr>
<tr>
<td>25. centil</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50. centil</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>75. centil</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>90. centil</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>8</td>
<td>2</td>
<td>9,8</td>
</tr>
</tbody>
</table>

Priloga 12: Hipoteza H5

Tabela 26: Povezanost spremenljivk (Pearsonov koeficientu r)

<table>
<thead>
<tr>
<th></th>
<th>Zpon_i</th>
<th>Zpred_i</th>
<th>Nep_dvan</th>
<th>Vep_dvan</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>0,467</td>
<td>0,016</td>
<td>0,019</td>
<td></td>
</tr>
<tr>
<td>1-str.</td>
<td>0,000</td>
<td>0,306</td>
<td>0,277</td>
<td></td>
</tr>
<tr>
<td>Kov.</td>
<td>0,285</td>
<td>0,006</td>
<td>415,096</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1000</td>
<td>1005</td>
<td>1005</td>
<td></td>
</tr>
</tbody>
</table>

Podatke spremenljivk Zpon_i in Zpred_i smo pridobili s pomočjo spletne ankete, podatke spremenljivk Nep_dvan in Vep_dvan pa s pomočjo dnevnika spletne strežnika.

Tabela 27: Statistične vrednosti spremenljivk

<table>
<thead>
<tr>
<th></th>
<th>Nep_dvan</th>
<th>Vep_dvan</th>
<th>Zpon</th>
<th>Zpred_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1031</td>
<td>1031</td>
<td>1005</td>
<td>1016</td>
</tr>
<tr>
<td>Arit. sredina</td>
<td>0,135</td>
<td>5369,120</td>
<td>3,802</td>
<td>3,902</td>
</tr>
<tr>
<td>S.E.</td>
<td>0,016</td>
<td>863,888</td>
<td>0,025</td>
<td>0,024</td>
</tr>
<tr>
<td>Mediana</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Modus</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>S.D.</td>
<td>0,507</td>
<td>27738,728</td>
<td>0,789</td>
<td>0,772</td>
</tr>
<tr>
<td>Varianca</td>
<td>0,257</td>
<td>769437031,397</td>
<td>0,623</td>
<td>0,595</td>
</tr>
<tr>
<td>Rang</td>
<td>5</td>
<td>411240,00</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Maksimum</td>
<td>5</td>
<td>411240,00</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>50. centil</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>75. centil</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Sl. 35: Grafični prikaz Zpon in Zpred_i
Priloga 13: Hipoteza H6

TABELA 28: POVEZANOST SPREMLJIVK (PEARSONOV KOEFICIENT R)

<table>
<thead>
<tr>
<th></th>
<th>Zdo_i</th>
<th>Zce_i</th>
<th>Zplac</th>
<th>N_dvan</th>
<th>V_dvan</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>0,242</td>
<td>0,253</td>
<td>0,126</td>
<td>0,020</td>
<td></td>
</tr>
<tr>
<td>1-str.</td>
<td>0,000</td>
<td>0,000</td>
<td>0,021</td>
<td>0,372</td>
<td></td>
</tr>
<tr>
<td>Kov.</td>
<td>0,153</td>
<td>0,187</td>
<td>0,110</td>
<td>-1038,97</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>258</td>
<td>257</td>
<td>260</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>0,253</td>
<td>0,254</td>
<td>0,133</td>
<td>0,112</td>
<td></td>
</tr>
<tr>
<td>1-str.</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Kov.</td>
<td>0,153</td>
<td>0,108</td>
<td>0,047</td>
<td>2147,76</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>258</td>
<td>666</td>
<td>898</td>
<td>898</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>0,253</td>
<td>0,254</td>
<td>0,150</td>
<td>0,059</td>
<td></td>
</tr>
<tr>
<td>1-str.</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,060</td>
<td></td>
</tr>
<tr>
<td>Kov.</td>
<td>0,187</td>
<td>0,108</td>
<td>0,061</td>
<td>1328,24</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>257</td>
<td>666</td>
<td>692</td>
<td>692</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>0,126</td>
<td>0,133</td>
<td>0,150</td>
<td>Nep_dvan</td>
<td>0,674</td>
</tr>
<tr>
<td>1-str.</td>
<td>0,021</td>
<td>0,000</td>
<td>0,000</td>
<td>Nep_dvan</td>
<td>0,000</td>
</tr>
<tr>
<td>Kov.</td>
<td>0,110</td>
<td>0,047</td>
<td>0,061</td>
<td>Nep_dvan</td>
<td>9467,38</td>
</tr>
<tr>
<td>N</td>
<td>260</td>
<td>898</td>
<td>692</td>
<td>Nep_dvan</td>
<td>1031</td>
</tr>
</tbody>
</table>

TABELA 29: POVZETEK REGRESIJSKEGA MODELA NEP_DVAN Z ZCE_I, ZPLAC, ZDO_I

<table>
<thead>
<tr>
<th></th>
<th>Model</th>
<th>R</th>
<th>R²</th>
<th>Prilagojen R²</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,15</td>
<td>0,023</td>
<td>0,019</td>
<td>0,894</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,2</td>
<td>0,039</td>
<td>0,031</td>
<td>0,888</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,21</td>
<td>0,044</td>
<td>0,032</td>
<td>0,888</td>
<td></td>
</tr>
</tbody>
</table>

TABELA 30: STATISTIČNE VREDNOSTI SPREMLJIVK

<table>
<thead>
<tr>
<th></th>
<th>Zdo_i</th>
<th>Zce_i</th>
<th>Zplac</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>260</td>
<td>898</td>
<td>692</td>
</tr>
<tr>
<td>Arit. sredina</td>
<td>4,069</td>
<td>3,664</td>
<td>3,978</td>
</tr>
<tr>
<td>S.E.</td>
<td>0,061</td>
<td>0,022</td>
<td>0,025</td>
</tr>
<tr>
<td>Mediana</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Modus</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>S.D.</td>
<td>0,976</td>
<td>0,646</td>
<td>0,668</td>
</tr>
<tr>
<td>Varianca</td>
<td>0,953</td>
<td>0,417</td>
<td>0,447</td>
</tr>
<tr>
<td>Rang</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Minimum</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Maksimum</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>50. centil</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>90. centil</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Opombe: Podatke spremenljivk Zdo_i, Zce_i in Zplac smo pridobili s pomočjo spletne ankete na naslovu http://nakup.merkur.si/anketa/. Simboli: Zadovoljstvo z dostavo izdelkov (Zdo_i), zadovoljstvo s cenami izdelkov (Zce_i), zadovoljstvo z možnostmi plačila (Zplac). Podatki o spremenljivkah Nep_dvan Vep_dvan pa se nahajajo v Prilogi 12.
Slika 36: Grafični prikaz ZDO_I, ZCE_I in ZPLAC TE NEP DVAN

Zadovoljstvo z dostavo izdelkov (ZDO_I)

Zadovoljstvo s cenami izdelkov (ZCE_I)

Zadovoljstvo z možnostmi plačila (ZPLAC)

Tabela 31: Povezanost spremenljivk (Pearsonov koeficientu r)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>0.721</td>
<td>0.616</td>
<td>0.458</td>
<td>0.350</td>
<td>0.014</td>
<td>0.017</td>
<td>-0.080</td>
<td>-0.036</td>
<td>-0.026</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.324</td>
<td>0.297</td>
<td>0.005</td>
<td>0.127</td>
<td>0.205</td>
<td>0.444</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1031</td>
<td>1031</td>
<td>1005</td>
<td>1016</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>0.721</td>
<td>0.645</td>
<td>0.406</td>
<td>0.385</td>
<td>0.023</td>
<td>0.009</td>
<td>-0.043</td>
<td>-0.034</td>
<td>-0.037</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.228</td>
<td>0.392</td>
<td>0.086</td>
<td>0.140</td>
<td>0.115</td>
<td>0.455</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1031</td>
<td>1031</td>
<td>1005</td>
<td>1016</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>0.616</td>
<td>0.645</td>
<td>0.424</td>
<td>0.353</td>
<td>0.001</td>
<td>-0.002</td>
<td>-0.081</td>
<td>-0.068</td>
<td>-0.063</td>
<td>-0.015</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.487</td>
<td>0.472</td>
<td>0.004</td>
<td>0.015</td>
<td>0.022</td>
<td>0.319</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1031</td>
<td>1031</td>
<td>1005</td>
<td>1016</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>0.458</td>
<td>0.406</td>
<td>0.424</td>
<td>0.467</td>
<td>0.016</td>
<td>0.019</td>
<td>-0.125</td>
<td>-0.131</td>
<td>-0.074</td>
<td>-0.027</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.306</td>
<td>0.277</td>
<td>0.000</td>
<td>0.000</td>
<td>0.010</td>
<td>0.199</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1005</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>0.350</td>
<td>0.385</td>
<td>0.353</td>
<td>0.467</td>
<td>-0.008</td>
<td>-0.005</td>
<td>-0.116</td>
<td>-0.095</td>
<td>-0.020</td>
<td>-0.004</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.396</td>
<td>0.438</td>
<td>0.000</td>
<td>0.001</td>
<td>0.262</td>
<td>0.453</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1016</td>
<td>1016</td>
<td>1016</td>
<td>1000</td>
<td>1016</td>
<td>1016</td>
<td>1016</td>
<td>1016</td>
<td>1016</td>
<td>1016</td>
<td></td>
</tr>
</tbody>
</table>

Opombe: Značilna stopnja potrditve korelacije je 0,05 enostransko za značilnost Pearsonovega koeficienta r. α – stopnja značilnosti (enostransko), krepko označene so značilne povezave z manj kot 5-odstotnim tveganjem.

Simboli: Preglednost e-prodajalne (EPpreg), enostavnost brskanja (EPbrsk), hitrost iskanja izdelkov (EPisk), število nakupov v e-prodajalni v zadnjih 12 mesecih (Nep_dvan), vrednost nakupov v e-prodajalni v zadnjih 12 mesecih (Vep_dvan), izkušenost v e-nakupovanju po število nakupov po internetu v zadnjih 12 mesecih (Ie), izkušenost v e-prodajalni v zadnjih 12 mesecih (Ve), število nakupov v Merkurju v zadnjih 12 mesecih (N_dvan), vrednost nakupov v Merkurju v zadnjih 12 mesecih (V_dvan).

Tabela 32: Statistične vrednosti spremenljivk

<table>
<thead>
<tr>
<th>Simbol</th>
<th>Aritmetična sredina</th>
<th>Standardni odklon</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPpreg</td>
<td>3.792</td>
<td>0.652</td>
<td>1031</td>
</tr>
<tr>
<td>EPbrsk</td>
<td>3.834</td>
<td>0.664</td>
<td>1031</td>
</tr>
<tr>
<td>EPisk</td>
<td>3.652</td>
<td>0.747</td>
<td>1031</td>
</tr>
<tr>
<td>Zpon</td>
<td>3.802</td>
<td>0.789</td>
<td>1005</td>
</tr>
<tr>
<td>Zpred</td>
<td>3.902</td>
<td>0.772</td>
<td>1016</td>
</tr>
<tr>
<td>Nep_dvan</td>
<td>0.135</td>
<td>0.507</td>
<td>1031</td>
</tr>
<tr>
<td>Vep_dvan</td>
<td>5369,120</td>
<td>27738,728</td>
<td>1031</td>
</tr>
<tr>
<td>Ie</td>
<td>1.707</td>
<td>1.650</td>
<td>1031</td>
</tr>
<tr>
<td>Ve</td>
<td>2.011</td>
<td>1.870</td>
<td>1031</td>
</tr>
<tr>
<td>N_dvan</td>
<td>31,310</td>
<td>36,464</td>
<td>1031</td>
</tr>
<tr>
<td>V_dvan</td>
<td>111531,973</td>
<td>170249,421</td>
<td>1031</td>
</tr>
</tbody>
</table>

Simboli: Preglednost e-prodajalne (EPpreg), enostavnost brskanja (EPbrsk), hitrost iskanja izdelkov (EPisk), število nakupov v e-prodajalni v zadnjih 12 mesecih (Nep_dvan), vrednost nakupov v e-prodajalni v zadnjih 12 mesecih (Vep_dvan), izkušenost v e-nakupovanju po število nakupov po internetu v zadnjih 12 mesecih (Ie), izkušenost v e-nakupovanju po vrednosti nakupov po internetu v zadnjih 12 mesecih (Ve), število nakupov v Merkurju v zadnjih 12 mesecih (N_dvan), vrednost nakupov v Merkurju v zadnjih 12 mesecih (V_dvan).
TABELA 33: STATISTIČNE VREDNOSTI SPREMENLJIVK

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
</tr>
<tr>
<td>Arit. sredina</td>
<td>3,792</td>
<td>3,834</td>
<td>3,652</td>
</tr>
<tr>
<td>S.E.</td>
<td>0,020</td>
<td>0,021</td>
<td>0,023</td>
</tr>
<tr>
<td>Mediana</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Modus</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>S.D.</td>
<td>0,652</td>
<td>0,664</td>
<td>0,747</td>
</tr>
<tr>
<td>Varianca</td>
<td>0,425</td>
<td>0,441</td>
<td>0,557</td>
</tr>
<tr>
<td>Rang</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Minimum</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Maksimum</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>25. centil</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>50. centil</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>75. centil</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>90. centil</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Opombe: Podatke spremenljivk smo pridobili s pomočjo spletne ankete na naslovu http://nakup.merkur.si/anketa/.

SLIKA 37: GRAFIČNI PRIKAZ ZDO_1, ZCE_1 IN ZPLAC TE NEP_DVAN
Priloga 15: Hipoteza H8

TABELA 34: POVEZANOST SPREMENLJIVK (PEARSONOV KOEFICIENT R)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>Ul</td>
<td>0,185</td>
<td>-0,040</td>
<td>-0,030</td>
<td>0,052</td>
<td>0,030</td>
<td>0,001</td>
<td>0,009</td>
<td>-0,006</td>
<td>-0,018</td>
<td>0,001</td>
<td>0,005</td>
<td>0,033</td>
<td>0,044</td>
</tr>
<tr>
<td>α</td>
<td>Ul</td>
<td>0,000</td>
<td>0,105</td>
<td>0,170</td>
<td>0,200</td>
<td>0,184</td>
<td>0,490</td>
<td>0,385</td>
<td>0,422</td>
<td>0,277</td>
<td>0,483</td>
<td>0,434</td>
<td>0,148</td>
<td>0,081</td>
</tr>
<tr>
<td>N</td>
<td>Ul</td>
<td>1031</td>
<td>1005</td>
<td>1016</td>
<td>260</td>
<td>898</td>
<td>692</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
</tr>
<tr>
<td>r</td>
<td>Ul</td>
<td>0,185</td>
<td>-0,125</td>
<td>-0,116</td>
<td>0,090</td>
<td>0,049</td>
<td>0,090</td>
<td>-0,080</td>
<td>-0,043</td>
<td>-0,081</td>
<td>0,014</td>
<td>-0,023</td>
<td>0,090</td>
<td>0,188</td>
</tr>
<tr>
<td>α</td>
<td>Ul</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,074</td>
<td>0,072</td>
<td>0,009</td>
<td>0,005</td>
<td>0,086</td>
<td>0,004</td>
<td>0,325</td>
<td>0,230</td>
<td>0,022</td>
<td>0,000</td>
</tr>
<tr>
<td>N</td>
<td>Ul</td>
<td>1031</td>
<td>1005</td>
<td>1016</td>
<td>260</td>
<td>898</td>
<td>692</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
</tr>
<tr>
<td>r</td>
<td>Ul</td>
<td>-0,040</td>
<td>-0,125</td>
<td>-0,116</td>
<td>0,090</td>
<td>0,049</td>
<td>0,090</td>
<td>-0,080</td>
<td>-0,043</td>
<td>-0,081</td>
<td>0,014</td>
<td>-0,023</td>
<td>0,090</td>
<td>0,188</td>
</tr>
<tr>
<td>α</td>
<td>Ul</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,074</td>
<td>0,072</td>
<td>0,009</td>
<td>0,005</td>
<td>0,086</td>
<td>0,004</td>
<td>0,325</td>
<td>0,230</td>
<td>0,022</td>
<td>0,000</td>
</tr>
<tr>
<td>N</td>
<td>Ul</td>
<td>1031</td>
<td>1005</td>
<td>1016</td>
<td>260</td>
<td>898</td>
<td>692</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
</tr>
</tbody>
</table>

Simboli: Pogostost uporabe interneta (anketa, Ul), število e-nakupov po internetu v 1 letu (anketa, Ie); zadovoljstva s: ponudbo izdelkov (Zpon), predstavitvijo izdelkov (Zpred), dostavo (Zdo_i), cenami izdelkov (Zce_i) in pogoji plačevanja (Zplac); preglednost e-prodajalne (EPpreg), enostavnost brskanja v e-prodajalni (EPbrsk), hitrost iskanja izdelkov v e-prodajalni (EPisk), število obiskov e-prodajalnih mest iz podatkovnega zbirka. Pogostost izdelkov v e-prodajalni značilnosti (Oep_en_tri) in drugih virov (Oep_o_tri), število e-nakupov v Merkurju od 15.3. do 16.6.2005 v e-novic (Oep_en_tri), pasic (Oep_p_tri) in drugih virov (Oep_o_tri), število e-nakupov v Merkurju od 15.3. do 16.6.2005 (Nep_tri). Značilna stopnja potrditve korelacije je 0,05 enostransko za značilnost Pearsonovega koeficienta r. α – stopnja značilnosti (enostransko), krepko označene so značilne povezave z manj kot 5-odstotnim tveganjem.
Pomote: Socio-demografski dejavniki respondentov so z nakupi povezani zelo šibko in samo v primeru spola in številom nakupov v e-prodajalni v trimesečju. Potrebno je upoštevati, da je v tem asu od 1031 respondentov ankete samo 55 opravilo e-nakup. Če izračunamo eta samo s podatki respondentov, ki so opravili e-nakup v tromesečju (vrednost 0 e-nakupov v tromesečju je manjša podatek), postane npr. povezava med spolom in številom e-nakupov Nep_tri močnejša (spol: Nep_tri; eta=0,369, α=0,011), z nakupi značilna postane tudi starost (spol: Nep_tri; eta=0,368, α=0,011). Povsem obratno pa se zgodi pri primerjavi e-kupcev v tromesečju (0 nakupov je manjša podatek) z elementi konstrukta H8: Nep_tri je značilen le še z predstavitvijo izdelkov (Zpred, r=-0,308, α=0,018) in s prihodi iz drugih virov (Oep_o_tri; r=0,422, α=0,002).

Priloga 16: Primerjava različnih vzorcev

1. Primerjava po spolu

TABELA 36: FREKVENČNA PORAZDELITEV SPOLA

<table>
<thead>
<tr>
<th>Starost</th>
<th>(A_{mžk})</th>
<th>(A_{-mžk})</th>
<th>(B_{ocena \ mžk})</th>
<th>(A_{ocena \ mžk})</th>
<th>(R_{ris})</th>
</tr>
</thead>
<tbody>
<tr>
<td>moški</td>
<td>553</td>
<td>579</td>
<td>3434</td>
<td>544</td>
<td>340</td>
</tr>
<tr>
<td>ženski</td>
<td>478</td>
<td>686</td>
<td>2563</td>
<td>359</td>
<td>273</td>
</tr>
<tr>
<td>delež moški</td>
<td>0,54</td>
<td>0,46</td>
<td>0,57</td>
<td>0,60</td>
<td>0,55</td>
</tr>
<tr>
<td>delež ženske</td>
<td>0,46</td>
<td>0,54</td>
<td>0,43</td>
<td>0,40</td>
<td>0,45</td>
</tr>
</tbody>
</table>

Simboli: \(A_{mžk} \) - respondenti ankete z vpisano številko Mžk, \(A_{-mžk} \) - respondenti ankete brez vpisane številke Mžk, \(B_{ocena \ mžk} \) - vzorce baze Mžk, \(A_{ocena \ mžk} \) - respondenti ankete z vpisano številko Mžk, vendar s sekundarno oceno spola – s pomočjo izpisa imena imetnika Mžk; \(R_{ris} \) - respondenti raziskave RIS.

2. Primerjava po starosti

TABELA 37: FREKVENČNA PORAZDELITEV STAROSTI

<table>
<thead>
<tr>
<th>Starost skupina</th>
<th>(A_{mžk})</th>
<th>(A_{-mžk})</th>
<th>(B_{ocena \ mžk})</th>
<th>(A_{ocena \ mžk})</th>
<th>(R_{ris})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 - 19 let</td>
<td>59</td>
<td>208</td>
<td>16</td>
<td>1</td>
<td>145</td>
</tr>
<tr>
<td>20 - 29 let</td>
<td>157</td>
<td>359</td>
<td>595</td>
<td>110</td>
<td>163</td>
</tr>
<tr>
<td>30 - 49 let</td>
<td>647</td>
<td>565</td>
<td>2883</td>
<td>593</td>
<td>244</td>
</tr>
<tr>
<td>50 - 65 let</td>
<td>149</td>
<td>111</td>
<td>1815</td>
<td>174</td>
<td>55</td>
</tr>
<tr>
<td>nad 66 let</td>
<td>19</td>
<td>22</td>
<td>591</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Skupaj</td>
<td>1031</td>
<td>1265</td>
<td>5900</td>
<td>890</td>
<td>611</td>
</tr>
</tbody>
</table>

Opombe: \(A_{mžk} \) - respondenti ankete z vpisano številko Mžk, \(A_{-mžk} \) - respondenti ankete brez vpisane številke Mžk, \(B_{ocena \ mžk} \) - vzorce baze Mžk, \(A_{ocena \ mžk} \) - respondenti ankete z vpisano številko Mžk, vendar s sekundarno oceno spola; \(R_{ris} \) - respondenti raziskave RIS.

SLIKA 38: RELATIVNA FREKVENČNA PORAZDELITEV STAROSTI

Simboli: \(A_{mžk} \) - anketa + Mžk, \(A_{-mžk} \) - anketa - Mžk, \(B_{ocena \ Mžk} \) - baza Mžk, \(A_{ocena \ Mžk} \) - anketa + Mžk, izpis regije iz baze Mžk po poštni številki, \(R_{ris} \) - RIS II.
3. Primerjava po regijah

TABELA 38: FREKVENČNA RAZDELITEV REGIJ PO VZORCIH

<table>
<thead>
<tr>
<th>Regija</th>
<th>A_{mkz}</th>
<th>A_{mkz}</th>
<th>B_{ocena}^{mkz}</th>
<th>A_{ocena}^{mkz}</th>
<th>R_{ris}</th>
</tr>
</thead>
<tbody>
<tr>
<td>osrednja Slovenija (1000)</td>
<td>336</td>
<td>434</td>
<td>1351</td>
<td>242</td>
<td>207</td>
</tr>
<tr>
<td>vzhodna Štajerska (2000)</td>
<td>139</td>
<td>214</td>
<td>1161</td>
<td>126</td>
<td>114</td>
</tr>
<tr>
<td>Savinjska (3000)</td>
<td>95</td>
<td>108</td>
<td>754</td>
<td>105</td>
<td>65</td>
</tr>
<tr>
<td>Gorenjska (4000)</td>
<td>193</td>
<td>187</td>
<td>1051</td>
<td>209</td>
<td>71</td>
</tr>
<tr>
<td>Goriška (5000)</td>
<td>77</td>
<td>71</td>
<td>480</td>
<td>65</td>
<td>36</td>
</tr>
<tr>
<td>Obalna (6000)</td>
<td>62</td>
<td>79</td>
<td>424</td>
<td>54</td>
<td>42</td>
</tr>
<tr>
<td>Dolenjska (8000)</td>
<td>80</td>
<td>94</td>
<td>443</td>
<td>64</td>
<td>45</td>
</tr>
<tr>
<td>Prekmurje (9000)</td>
<td>49</td>
<td>78</td>
<td>309</td>
<td>38</td>
<td>35</td>
</tr>
<tr>
<td>SKUPAJ</td>
<td>1031</td>
<td>1265</td>
<td>5973</td>
<td>903</td>
<td>615</td>
</tr>
</tbody>
</table>

Simboli: A_{mkz} - respondenti ankete z vpisano številko M kz, A_{mkz} - respondenti ankete brez vpisane številke M kz, B_{ocena}^{mkz} - vzorec baze M kz, A_{ocena}^{mkz} - respondenti ankete z vpisano številko M kz, vendar s sekundarno oceno spola – s pomočjo izpisa imena imetnika M kz; R_{ris} - respondenti raziskave RIS.

SLIKA 39: RELATIVNA FREKVENČNA PORAZDELITEV REGIJ PO VZORCIH

Simboli: A_{mkz} - anketa + M kz, A_{mkz} - anketa - M kz, B_{ocena}^{mkz} - baza M kz, A_{ocena}^{mkz} - anketa + M kz, izpis regije iz baze M kz po poštni številki; R_{ris} - RIS II.
4. Primerjava po izobrazbi

TABELA 39: FREKVENČNA RAZDELITEV IZOBRAZBENE STRUKTURE

<table>
<thead>
<tr>
<th>Izobrazba</th>
<th>(A_{mkz})</th>
<th>(A_{mkz}^-)</th>
<th>(R_{ris})</th>
</tr>
</thead>
<tbody>
<tr>
<td>osnovna šola ali manj</td>
<td>29</td>
<td>123</td>
<td>13</td>
</tr>
<tr>
<td>poklicna šola</td>
<td>83</td>
<td>80</td>
<td>112</td>
</tr>
<tr>
<td>srednja šola</td>
<td>480</td>
<td>554</td>
<td>168</td>
</tr>
<tr>
<td>višja ali visoka šola in več</td>
<td>439</td>
<td>508</td>
<td>130</td>
</tr>
<tr>
<td>SKUPAJ</td>
<td>1031</td>
<td>1265</td>
<td>423</td>
</tr>
</tbody>
</table>

Simboli: \(A_{mkz} \) - respondenti ankete z vpisano številko Mkz, \(A_{mkz}^- \) - respondenti ankete brez vpisane številke Mkz, \(R_{ris} \) - respondenti raziskave RIS.

SLIKA 40: RELATIVNA FREKVENČNA PORAZDELITEV IZOBRAZBENE STRUKTURE

Simboli: \(A_{mkz} \) - respondenti ankete z vpisano številko Mkz, \(A_{mkz}^- \) - respondenti ankete brez vpisane številke Mkz, \(R_{ris} \) - respondenti raziskave RIS.

5. Primerjava po zaposlenosti

TABELA 40: FREKVENČNA RAZDELITEV ZAPOSLETEV PO VZORCIH

<table>
<thead>
<tr>
<th>Zaposlitev</th>
<th>(A_{mkz})</th>
<th>(A_{mkz}^-)</th>
<th>(R_{ris})</th>
</tr>
</thead>
<tbody>
<tr>
<td>učenci, dijaki, vajenci</td>
<td>8</td>
<td>111</td>
<td>138</td>
</tr>
<tr>
<td>študenti</td>
<td>43</td>
<td>151</td>
<td>51</td>
</tr>
<tr>
<td>zaposleni</td>
<td>910</td>
<td>926</td>
<td>354</td>
</tr>
<tr>
<td>neaktivi</td>
<td>70</td>
<td>77</td>
<td>63</td>
</tr>
<tr>
<td>SKUPAJ</td>
<td>1031</td>
<td>1265</td>
<td>606</td>
</tr>
</tbody>
</table>

Simboli: \(A_{mkz} \) - respondenti ankete z vpisano številko Mkz, \(A_{mkz}^- \) - respondenti ankete brez vpisane številke Mkz, \(R_{ris} \) - respondenti raziskave RIS.
6. Primerjava po številu e-nakupov

TABELA 41: FREKVENČNA RAZDELITEV ŠTEVILA E-NAKUPOV PO VZORCIH

<table>
<thead>
<tr>
<th>St. e-nakupov v zadnjih 12 mesecih po internetu</th>
<th>A_{mkz}</th>
<th>A_{mkz}^{-}</th>
<th>R_{ris}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>105</td>
<td>180</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>143</td>
<td>186</td>
<td>13</td>
</tr>
<tr>
<td>3 in več</td>
<td>371</td>
<td>381</td>
<td>61</td>
</tr>
<tr>
<td>SKUPAJ</td>
<td>619</td>
<td>747</td>
<td>94</td>
</tr>
</tbody>
</table>

Simboli: A_{mkz} - respondenti ankete z vpisano številko Mkz, A_{mkz}^{-} - respondenti ankete brez vpisane številke Mkz, R_{ris} - respondenti raziskave RIS.

SLIKA 42: RELATIVNA FREKVENČNA PORAZDELITEV ŠTEVILA E-NAKUPOV PO VZORCIH
7. Primerjava po vrednosti e-nakupov

TABELA 42: FREKVENČNA RAZDELOVJE VREDNOSTI E-NAKUPOV PO VZORCIH

<table>
<thead>
<tr>
<th>Vrednost e-nakupov v zadnjih 12 mesecih po internetu</th>
<th>(A_{mkz})</th>
<th>(A_{-mkz})</th>
<th>(R_{ris})</th>
</tr>
</thead>
<tbody>
<tr>
<td>do 10.000 SIT</td>
<td>71</td>
<td>148</td>
<td>17</td>
</tr>
<tr>
<td>od 10.000 do 20.000 SIT</td>
<td>105</td>
<td>146</td>
<td>15</td>
</tr>
<tr>
<td>od 20.000 do 50.000 SIT</td>
<td>185</td>
<td>192</td>
<td>27</td>
</tr>
<tr>
<td>od 50.000 do 100.000 SIT</td>
<td>143</td>
<td>156</td>
<td>20</td>
</tr>
<tr>
<td>več kot 100.000 SIT</td>
<td>133</td>
<td>135</td>
<td>21</td>
</tr>
<tr>
<td>SKUPAJ</td>
<td>637</td>
<td>777</td>
<td>100</td>
</tr>
</tbody>
</table>

Simboli: \(A_{mkz}\) - respondenti ankete z vpisano številko Mkz, \(A_{-mkz}\) - respondenti ankete brez vpisane številko Mkz, \(R_{ris}\) - respondenti raziskave RIS.

SLIKA 43: RELATIVNA FREKVENČNA PORAZDELOVJE VREDNOSTI E-NAKUPOV PO VZORCIH

[Diagram naširite tukaj]
<table>
<thead>
<tr>
<th>Statistične ocene</th>
<th>N_dvan</th>
<th>N_baza_dvan</th>
<th>V_dvan</th>
<th>V_baza_dvan</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>910</td>
<td>5996</td>
<td>910</td>
<td>5996</td>
</tr>
<tr>
<td>Aritmetična sredina</td>
<td>35,47</td>
<td>21,54</td>
<td>126362,05</td>
<td>76609,35</td>
</tr>
<tr>
<td>S.E.</td>
<td>1,22</td>
<td>0,39</td>
<td>5833,51</td>
<td>1587,15</td>
</tr>
<tr>
<td>Mediana</td>
<td>24</td>
<td>12</td>
<td>72324,5</td>
<td>36312</td>
</tr>
<tr>
<td>Modus</td>
<td>3</td>
<td>1</td>
<td>1550</td>
<td>14158</td>
</tr>
<tr>
<td>S.D.</td>
<td>36,86</td>
<td>29,8002096</td>
<td>175974,76</td>
<td>122898,80</td>
</tr>
<tr>
<td>Varianca</td>
<td>1358,78</td>
<td>888,05</td>
<td>30967116335,77</td>
<td>15104114803,78</td>
</tr>
<tr>
<td>Rang</td>
<td>291</td>
<td>450</td>
<td>2400590</td>
<td>2525139</td>
</tr>
<tr>
<td>Minimum</td>
<td>1</td>
<td>1</td>
<td>353</td>
<td>88</td>
</tr>
<tr>
<td>Maksimum</td>
<td>292</td>
<td>451</td>
<td>2400943</td>
<td>2525227</td>
</tr>
<tr>
<td>Vsota</td>
<td>32281</td>
<td>129137</td>
<td>114989464</td>
<td>459349679</td>
</tr>
<tr>
<td>10. centil</td>
<td>4</td>
<td>2</td>
<td>8513,00</td>
<td>4664,80</td>
</tr>
<tr>
<td>20. centil</td>
<td>8</td>
<td>4</td>
<td>19473,40</td>
<td>9893,40</td>
</tr>
<tr>
<td>25. centil</td>
<td>9</td>
<td>5</td>
<td>25839,75</td>
<td>13093,25</td>
</tr>
<tr>
<td>30. centil</td>
<td>12</td>
<td>6</td>
<td>34651,60</td>
<td>16561,90</td>
</tr>
<tr>
<td>40. centil</td>
<td>17</td>
<td>8</td>
<td>49941,00</td>
<td>25281,80</td>
</tr>
<tr>
<td>50. centil</td>
<td>24</td>
<td>12</td>
<td>72324,5</td>
<td>36312</td>
</tr>
<tr>
<td>60. centil</td>
<td>32</td>
<td>16</td>
<td>99637,2</td>
<td>51988</td>
</tr>
<tr>
<td>70. centil</td>
<td>42</td>
<td>22,9</td>
<td>138225,1</td>
<td>75896,5</td>
</tr>
<tr>
<td>75. centil</td>
<td>49</td>
<td>27</td>
<td>163831,5</td>
<td>94229</td>
</tr>
<tr>
<td>80. centil</td>
<td>58</td>
<td>32</td>
<td>189984,8</td>
<td>114340,2</td>
</tr>
<tr>
<td>90. centil</td>
<td>83,9</td>
<td>50</td>
<td>283410,9</td>
<td>182372,5</td>
</tr>
</tbody>
</table>

Priloga 17: Statistične formule

FORMULA 2: OJAČEVALNA KONTINGENCA

$SD\cdot R \rightarrow SR^+$

Opomba: Po Skinnerjevi diskriminativni dražljaj (SD) ustvari priložnost (;) za odziv (R), da izzove (→) ojačitev (SR+). Pri obnašanju poskusne živali v Skinnerjevi kletki bi ojačevalno kontingenco tvorili: vzvod kot diskriminativna antecedentna okoliščina (SD:), pritisk na vzvod kot dejanje (R) in nagrada s hrano kot ojačenje (SR+).

FORMULA 3: SPEARMANOV KOEFEKCIENT KORELACIJE RANGA

$\sigma = 1 - \frac{6 \sum d^2}{n(n^2 - 1)}$

Opomba: Ro oz. σ je oznaka za spearmanov koefficient korelacije ranga.

Simboli: d - razlika med rangi ustreznih se členov.

FORMULA 4: KOEFEKCIENT ETA

$\eta = \frac{df_{med-skupine} \times F}{(df_{med-skupine} \times F) + df_{znotraj-skupin}}$

$F = \frac{s_{med-skupine}^2}{s_{znotraj-skupin}^2}$

Opomba: η ali eta.

Simboli: df so stopinje prostosti, s^2 = varianca, F = enostranska analiza variance dveh skupin: v F testu se primerja ocena variance med skupinami z oceno variance znotraj skupin.

FORMULA 5: T-TEST DVEH ODVISNIH VZORCEV

$t = \frac{\bar{X}_1 - \bar{X}_2}{S.E.}$

$S.E. = \sqrt{\frac{s_1^2 + s_2^2 - 2 \times Cov_{12}}{N}}$

Opomba: T-test odvisnih vzorcev (ang. The t-Test for Paired Samples).

Simboli: N - št. parov med vzorcema X_1 in X_2, s^2 - varianca, Cov - kovarianca. Aritmetične sredine odvisnih vzorcev (\bar{X}_1 in \bar{X}_2) se redkeje razlikujejo kot aritmetične sredine neodvisnih vzorcev, saj prihajajo vrednosti iz enakih ali podobnih primerov (Cramer 1998, 205).

FORMULA 6: TEST ZNAKOV ZA ODVISNA VZORCA

$z = \frac{(n + 0.5) - N / 2}{0.5 \times \sqrt{n}}$

Opombe: Odkloni vrednosti enega vzorca od drugega se merijo z $+$, - ali 0 (odklon v $+$, odklon v $-$, brez odklona).

Simboli: n = število najmanj pogostega znaka (med $-$, $+$, 0) ; N = število odklonov (+ in -).

FORMULA 7: PEARSONOV KORELACIJSKI KOEFICIENT

\[r_{xy} = \frac{\text{Cov}_{xy}}{s_x \times s_y} \]

\[t = r_{xy} \times \sqrt{\frac{N-2}{1-r_{xy}^2}} \]

Opomba: Če je r od 0,1 do 0,3 (od 1 do 9 % pojasnjene variance) je korelacija šibka, od 0,4 do 0,6 (od 16 do 36 % pojasnjene variance) srednja, od 0,7 do 0,9 (od 49 do 81 % pojasnjene variance) pa močna ali visoka korelacija.

Simboli: \(t \)- stopnja značilnosti \(r_{xy} \), \(r_{xy}^2 \)- determinacijski koeficient, \(N \)- število primerov, \(N-2 \)- stopnje prostosti (df), Cov\(_{xy} \)- kovarianca (povprečje produktov odklonov); \(s \)- standardni odklon (koren povprečij kvadratov odklonov). \(r_{xy}^2 \) pove, kakšen % varianca si delita spremenljivki.

Vir: Cramer 1998, 139-142.

FORMULA 8: DURBIN-WATSONOV TEST

\[d = \frac{\sum_{i=1}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2} = 2 \times (1 - r_e) \]

Opomba: Durbin-Watsonov test avtokoreliranosti preostankov ocenjuje pravilnost izbrane regresijske zveze. Če je avtokorelacija pozitivna, so zaporedni členi \(e \), ki bi morali biti naključni, v zvezi s kakšnim neidentificiranim pojavom. Najbolj je, da avtokorelacijs ni, v mnogih primerih pa je negativna avtokorelacija znak dobre specifikacije regresije. Če je \(r_e = 0 \) ni avtokorelacija in je \(d = 2 \); če raste \(r_e \) od 0 do 1, pada \(d \) od 2 do 0 in je primer pozitivne avtokorelacije naključnega člena; če je avtokorelacija negativna, se \(r_e \) giba od 0 do -1, \(d \) pa narašča od 2 do 4.

Simboli: \(e_i \)- serija preostankov med ocenjenimi in dejanskimi vrednostmi, \(e_{i-1} \)- za 1 člen premaknjena serija preostankov, \(r_e \)- korelacijski količnik med serijo preostankov \(e_i \) in za en člen premaknjeno serijo preostankov.

FORMULA 9: PEARSONOV PARCIALNI KORELACIJSKI KOEFICIENT

\[r_{12.3} = \frac{r_{12} - (r_{13} \times r_{23})}{\sqrt{(1-r_{13}^2) \times (1-r_{23}^2)}} \]

\[r_{12.34} = \frac{r_{12.3} - (r_{14.3} \times r_{24.3})}{\sqrt{(1-r_{14.3}^2) \times (1-r_{24.3}^2)}} \]

Opomba: Parcialna korelacija prvega reda je Pearsonova korelacija med dvema spremenljivkama, pri kateri odstranimo vpliva tretje spremenljivke. Pri parcialni korelacijski drugega reda pa pri korelaciji med dvema spremenljivkama odstranimo vpliv dveh drugih spremenljivk. Primer: \(r_{12} \)- Pearsonova korelacija med dvema spremenljivkama, \(r_{123} \)- Pearsonova korelacija med spremenljivkama s kontrolo tretje spremenljivke itd.

Simboli: \(r_{12.3} \)- parcialna korelacija prvega reda, \(r_{12.34} \)- parcialna korelacija drugega reda.

FORMULA 10: CROMBACH ALPHA KOEFICIENT

\[\alpha_{\text{Crombach}} = \frac{s_{\text{med skupinami}}^2 - s_{\text{napake}}^2}{s_{\text{med skupinami}}^2} \]

Opmočje: Crombach alpha (alfa) koeficient določa notranjo zanesljivost niza predmetov, ki merijo skupno lastnost. Koeficient pomeni delež variance, ki je pojasnjena med subjekti (lahko se uporabi tudi za merjenje enega faktorja v več zaporednih meritvah). Stopnja alfe 0,80 ali več navadno pomeni sprejemljivo zanesljivost skale.

Simboli: \(\alpha_{\text{Crombach}} \) - Crombach alfa, \(s^2 \) - varianca.

FORMULA 11: TEST RAZLIČNOSTI HI-KVADRAT (\(\chi^2 \)) DVEH NEPOVEZANIH VZORCEV

\[\chi^2 = \sum_{i=1}^{n} \left(\frac{\text{frekvenca}_{\text{opazovana}} - \text{frekvenca}_{\text{pričakovana}}}{\text{frekvenca}_{\text{pričakovana}}} \right)^2 \]

\[\text{frekvenca}_{\text{pričakovana}} = \frac{\text{total}_{\text{kotoma}} \times \text{total}_{\text{vrstice}}}{\text{total}_{\text{skupaj}}} \]

\[df = (\text{s}\text{t}_{\text{kotona}} - 1) \times (\text{s}\text{t}_{\text{vrstic}} - 1) \]

\[\chi^2_{\text{Yates}} = \sum_{i=1}^{n} \left(\frac{\text{frekvenca}_{\text{opazovana}} - \text{frekvenca}_{\text{pričakovana}}}{0.5} \right)^2 \]

Opmočje: Podatke o frekvencah dobimo iz kontingenčne tabele dveh spremenljivk (2*2 dimenzija) po kategorijah (frekvenca_{opazovana}). Iz skupnih vrednosti nato izračunamo pričakovane vrednosti frekvenc (frekvenca_{pričakovana}) in vrednost \(\chi^2 \). Stopinje prostosti (\(df \)) izračunamo s število vrstic kontingenčne tabele-1*število kategorij kontingenčne tabele-1 (pri primeri dveh spremenljivk znese izračun \(df \) = število kategorij-1). Če je v kontingenčni tabeli dimenzije 2*2 število vseh primerov (skupna vsota frekvenc, total_{skupaj}) večje kot 40, potem je prav, da se absolutna razlika med opazovano in pričakovano frekvenco zmanjša za 0,5 (t.i. Yates-ova korekcija), zato je v teh primerih test Hi-kvadrata vedno enak \(\chi^2_{\text{Yates}} \). Test \(\chi^2 \) je običajno dvostranski, razen v primeru dveh kategorij, kjer je enostranski (\(\alpha = \) dvostranska stopnja značilnosti/2).

Simboli: \(\chi^2 \) - Hi kvadrat, \(i \) - število kategorij; frekvenca_{opazovana} - podatek iz kontingenčne tabele.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diplomiral sem na Ekonomsko-poslovni fakulteti v Mariboru, na temo</td>
<td>Kot višji komercialist sem delal v programu Kvalitetna jekla (leta 1999</td>
<td>Merkur prevzame podjetje Kovinotehna in s prehodom zaposlenih v</td>
<td>Vodil sem projekt prenove e-prodajalne http://nakup.merkur.si (zagon</td>
</tr>
<tr>
<td></td>
<td>Uporaba interneta v podjetju Kovinotehna d.d. in se zaposlil kot</td>
<td>nabava in veleprodaja konstrukcijskih in orodnih jekel, leta 2000 sem</td>
<td>Merkur, d. d., Naklo sem se zaposlil kot oglaševalec v oddelku</td>
<td>25. 5. 2001), za katero sem prejel v imenu Merkurja prestižno nagrado</td>
</tr>
<tr>
<td></td>
<td>Kvaliteta jekla.</td>
<td></td>
<td>komuniciranja še danes vodim projekte spletnega komuniciranja.</td>
<td>v Gospodarskem Vestniku št. 6, dne 11. 2. 2002, Rubrika: Informatika &</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tehnologija, str. 24, avtor: Robert Peklaj). Spletne strani so bile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vodil sem prenovo Merkurjevih spletnih strani intraneta in Merkurjevih</td>
</tr>
</tbody>
</table>